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Abstract 

This paper describes an improved approach to Boolean 
network optimization using internal don’t-cares. The 
improvements concern the type of don’t-cares computed, 
their scope, and the computation method. Instead of the 
traditional compatible observability don’t-cares (CODCs), 
we introduce and justify the use of complete don’t-cares 
(CDC).  To ensure the robustness of the don’t-care 
computation for very large industrial networks, a 
windowing scheme is implemented, which computes 
substantial subsets of the CDCs in reasonable time. 
Finally, we give a SAT-based don’t-care computation 
algorithm, which is more efficient than BDD-based 
algorithms. Experimental results confirm that these 
improvements work well in practice. Complete don’t-cares 
allow for a reduction in the number of literals compared to 
the CODCs. Windowing guarantees robustness, even for 
very large benchmarks, to which previous methods cannot 
be applied. SAT reduces the runtime, making don’t-cares 
affordable for a variety of other Boolean methods applied 
to the network. 

1 Introduction 

Optimization of Boolean networks using don’t-cares 
plays an important role in technology independent logic 
synthesis and incremental re-synthesis of mapped netlists. 
Traditionally, only satisfiability don’t-cares (SDCs) and 
compatible observability don’t-cares (CODCs) have been 
used [19]. The classical algorithm to compute CODCs [21] 
implemented in SIS [22] became the method of choice for 
many industrial tools. Later improvements to this 
algorithm concerned a more robust implementation [20], 
independence from the local function representation [2], 
and generalization to multi-valued networks [7]. 

CODCs form a subset of the complete don’t-cares 
(or complete flexibility) [12] projected onto a node by its 
context in the multi-level network. It was shown 
experimentally [11] that the computation of CDCs is 
comparable in runtime and memory requirements, while, 
as expected, the amount of don’t-cares computed is larger 

than for CODCs. The presentation in [11][12] considers 
the most general case of non-deterministic multi-valued 
networks, leaving questions about its efficiency when 
applied to purely binary networks. 

The first contribution of this paper is in developing a 
specialized version of the multi-valued don’t-care 
computation algorithm [11][12], to work on binary 
networks, and in showing that this algorithm leads to an 
increase in optimization quality, due to the additional 
freedom provided by the CDCs, compared to CODCs. 

The traditional don’t-care optimization in SIS is 
performed using the whole network as the context for each 
node. This restricts the use of don’t-cares to small or 
medium-sized networks. To apply the same method to 
larger networks, the network can be partitioned with the 
scope of computation limited to one partition at a time. 
Such methods have not been published, but might be part 
of some industrial tools.  We suspect that partitioning for 
don’t care computation is difficult, ad hoc, and 
implementation dependent. 

The second contribution of the paper concerns the 
computation of don’t-cares in large industrial designs. We 
propose a non-partitioning scheme, called windowing, 
which efficiently trades quality for runtime in network 
optimization. Windowing guarantees that the maximal 
flexibility, within a context limited by a fixed number of 
logic levels, is captured. Windowing is fast because 
construction of a window for a node involves only a small 
number of surrounding nodes, making it unnecessary to 
traverse the whole network. Windowing is not a 
partitioning scheme because each node has its own 
window, which may overlap with windows computed for 
other nodes. Finally, windowing is dynamic and can be 
performed “on the fly”, without the need to duplicate or 
otherwise modify the network or its parts. The latter 
quality makes windowing useful for applications that 
frequently update the network, e.g. decomposition-
mapping [13]. 

The third contribution of the paper concerns the use of 
Boolean satisfiability [9][15], rather than BDDs or SOPs, 
for the computation of don’t-cares. We show that SAT is 
responsible for speed-ups in the computation, making 
CDCs easy to compute and affordable enough, so that 
many procedures, which previously relied on algebraic 



methods, can now be extended to Boolean methods based 
on don’t-cares. 

In combination, these contributions provide improved 
efficiency, quality, and ruggedness for technology 
independent logic synthesis.  

The paper is structured as follows: Section 2 establishes 
the background. Section 3 defines CDCs and compares 
them with CODCs. Section 4 presents windowing. Section 
5 describes and compares BDD-based and SAT-based 
approaches to the CDC computation. Section 6 gives 
experimental results, and Section 7 concludes the paper. 

2 Background  

Definition. A completely specified Boolean function 
(CSF) is a mapping from n-dimensional (n ≥  0) Boolean 
space into a single-dimensional one: {0,1}n → {0,1}.  

A don’t-care for a logic function allows it to have either 
0 or 1 as a possible value. If, for some input combinations, 
the output of the function is a don’t-care, this function is 
called an incompletely specified Boolean function (ISF).  

An assignment of n Boolean variables is called a 
minterm. A CSF has negative (positive) minterms, which 
correspond to the assignments, for which it takes values 0 
(1). The positive and negative minterms are called the care 
minterms. An ISF additionally has don’t-care minterms, 
which correspond to the assignments, for which the 
function is flexible and can be either 0 or 1.  

A CSF is compatible with an ISF (implements the ISF), 
if the CSF can be derived from the ISF by assigning either 
0 or 1 to each don’t-care minterm. 

Given several ISFs, the largest ISF is the one that has the 
largest number of don’t-care minterms. 

Definition. A Boolean network is a directed acyclic 
graph with nodes represented by Boolean functions. The 
sources of the graph are the primary inputs (PIs) of the 
network; the sinks are the primary outputs (POs). 

Typically, the nodes and their output signals are named 
the same. The output of a node may be an input to other 
nodes called its fanouts. The inputs of a node are called its 
fanins. If there is a path from node A to B, then A is said to 
be in the transitive fanin of B and B in the transitive fanout 
of A. The transitive fanin of B, TFI(B), includes B and all 
nodes in its transitive fanin, including the PIs. The 
transitive fanout of B, TFO(B), includes B and all nodes in 
its transitive fanout including the POs.  

The functionality of a node in terms of its immediate 
fanins is called the local function of the node. The 
functionality in terms of the primary inputs of the network 
is called the global function. 

3 Complete don’t-cares 

Consider an individual node represented by its CSF. It is 
not possible to change the node’s function without 
changing the node’s behavior. However, the situation is 
different when the node is considered in its context in the 
network. In this case, the node’s function can often be 
substantially modified, without changing the behavior of 
the network. This is because other nodes prevent some 
combinations of inputs from reaching the node as well as 
hiding the node’s output from the POs under some 
conditions. 

The flexibility allowed in the implementation of a node 
can be represented as an ISF. A don’t-care minterm of the 
ISF represents a combination of the node’s input variables, 
for which the value of the node’s output is not required for 
the POs of the network to produce the correct values. 

Definition. The complete don’t-cares (CDCs), or 
complete flexibility (CF), of a node in the binary network, 
is the largest ISF, whose don’t-care minterms represent 
conditions when the output of the node does not influence 
the values produced by the POs of the network.  

The CDCs are important for network optimization 
because replacing the node’s function by any CSF 
compatible with the ISF representing a node’s CDCs, does 
not change the functionality of the POs of the network. 

A key observation about CDCs is that they are not 
compatible. That is, some POs of the network may produce 
incorrect values if CDCs are derived for several nodes and 
used independently. In this sense CDCs differ from 
CODCs [21]. However, if CDCs are computed and used 
immediately to optimize a node before moving on to 
another node, compatibility is not required. In this case, the 
CDCs computed and used for each node reflect all prior 
changes to the nodes. 

The CDCs include two major parts, the satisfiability 
don’t-cares (SDCs), which arise because some 
combinations are not produced as the inputs of the node, 
and the observability don’t-cares (ODCs), which arise 
because under some conditions the output of the node does 
not matter. Figure 1 shows a situation when node F has 
SDCs in the local space (x = 0, y = 1) due to limited 
controlability, while node G has ODCs in the global space 
(a = 1, b = 1) due to the limited observability. 

 
Figure 1. Example of SDCs and ODCs. 
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Don’t-care computations are traditionally performed in 
the context of the whole Boolean network, as exemplified 
by SIS [22]. In the case of CDCs, this approach guarantees 
that the don’t-cares computed are the largest don’t-cares 
possible for a node.  

However, in many cases, the network is too large, and 
the computation becomes slow or impossible. In such 
cases, a method of limiting the scope is needed to restrict 
the computation to a relatively small sub-network. The 
don’t-cares computed for the node in this sub-network 
should be complete with respect to the sub-network, but 
will not be complete in general, i.e. considering a larger 
sub-network could result in more don’t-cares with a likely 
increase the runtime. 

Not only the size but also the “shape” of the sub-network 
is critical to get sufficiently large don’t-cares. If a sub-
network is large but does not include the nodes responsible 
for producing most of the don’t-cares, the computation will 
be ineffective. 

We developed a windowing method, which limits the 
scope of the don’t-care computation to only a few logic 
levels on the fanin/fanout side of the node. An important 
observation is that reconvergence is responsible for don’t 
cares; hence along with the near TFI and TFO of the node, 
a window should contain all re-convergent paths that begin 
and terminate in these nodes.  

For the special case, when the inputs to the window have 
disjoint supports in terms of the PIs, while all outputs of 
the window belong to the POs of the network, the CDCs 
computed for a node in the window are equal to the CDCs 
when the whole network is considered.  

4 Windowing  

This section contains a detailed discussion of the 
windowing algorithm introduced in [13]. 

Definition. Given a directed acyclic graph and two non-
overlapping subsets of its nodes, one set is called the leaf 
set and the other the root set, if every path from any node 
in the root set towards the sources of the graph passes 
through some node in the leaf set.  

Definition. Given a directed acyclic graph and two 
subsets of its nodes, which are in the leaves/roots 
relationship, a window is a subset of nodes of the graph, 
which contains the roots and all nodes between the root set 
and the leaf set. The nodes in the leaf set are delimiters and 
do not belong to the set of nodes included in the window. 

Definition. A path between a pair of nodes is distance-k 
if it spans exactly k edges between the pair. 

Definition. Two nodes are distance-k from each other if 
the shortest path between them is distance-k. 

The pseudo-code in Figure 2 and the example in Figure 3 
describe the flow of the window computation algorithm. 
Procedure Window takes a node and two integers, which 

define the number of logic levels on the fanin/fanout sides 
of the node to be included in the window. It returns the leaf 
set and the root set of the window. With minor 
modifications, this procedure can compute a window for a 
set of nodes, which, in general, can be neither adjacent nor 
in the fanin/fanout relationship. 

 
nodeset Window( node N, int nFanins, int nFanouts ) 
{ 
     nodeset  I1  = CollectNodesTFI( {N}, nFanins ); 
     nodeset  O1 = CollectNodesTFO( {N}, nFanouts ); 
     nodeset  I2  = CollectNodesTFI( O1, nFanins + nFanouts ); 
     nodeset  O2 = CollectNodesTFO( I1, nFanins + nFanouts); 
     nodeset S = I2  ∩ O2; 
     nodeset L = CollectLeaves( S ); 
     nodeset R = CollectRoots( S ); 
     return (L, R); 
} 

Figure 2. Computation of a window for a node. 
 
The procedure CollectNodesTFI takes a set S of nodes 

and an integer number m, m ≥ 0, and return a set of nodes 
on the fanin side, which are distance-m or less from the 
nodes in S. An efficient implementation of this procedure 
for small m (for most applications, m ≤ 10) iterates through 
the nodes that are distance-k (0 ≤ k ≤ m) from the given set. 
The distance-0 nodes are the original nodes. The distance-
(k+1) nodes are found by collecting those fanins of the 
distance-k nodes, which were not visited before. The 
procedure CollectNodesTFO is similar. 

 

 
Figure 3. Example of a 1 x 1 window. 

Procedures CollectLeaves and CollectRoots take a set of 
window’s internal nodes and determine the leaves and 
roots of this window. The leaves are the nodes that (a) do 
not belong to the given set, and (b) are fanins of at least 
one of the node in the set. Similarly, the roots are the nodes 
that (a) belong to the given set, and (b) are fanins of at 
least one node not in the set. Note that some of the roots 
computed in this way are not in the TFO cone of the 
original node(s), for which the window is being computed, 
and therefore can be dropped without violating the 
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definition of the window and undermining the usefulness 
of the window for the don’t-care computation. 

We typically refer to the window constructed for a node 
by including n TFI logic levels and m TFO logic levels as 
an n x m window. For example, Figure 3 shows a 1 x 1 
window for node N in a network. The nodes labeled I1, O1 
and S are in correspondence with the pseudo-code in 
Figure 3. The window’s roots (top) and leaves (bottom) are 
shaded. Note that the nodes labeled by S do not belong to 
the TFI and TFO cones of node N, but represent the 
reconvergent paths in the vicinity of node N. The left-most 
and right-most roots can be dropped, as explained above. 

5 Don’t-care computation  

The network optimization discussed in this paper iterates 
through all the nodes of the network. For each node, the 
CDCs are computed and used to simplify the node before 
optimizing the next node. The computation of CDCs for a 
node can be performed in the context of the whole 
network, if the network is small; otherwise, a window is 
constructed for the node. Without limiting the generality of 
the CDC computation methods, we discuss these methods 
as applied to a node in the whole network. If a window is 
used, the network is the sub-network defined by the 
window containing the node.  

The general approach to computing the CDCs of a node 
in the non-deterministic multi-valued network [11][12] 
relies on the use of an additional variable z for the output 
of the node, and the computation of Boolean relations in 
terms of the PI variables, the PO variables, and variable z.  

This approach can be simplified for a node in a 
deterministic binary network; the computation can be 
performed without variable z or Boolean relations. In both 
BDD-based and SAT-based implementations, we consider 
two instances of the same network, which only differ in an 
inverter at the output of the given node in the second copy 
of the network (Figure 4). This duplication of the network 
is an imaginary construction, done for the sake of the 
presentation and not actually implemented in software. 

The first network represents the original behavior, while 
the second represents the behavior of the network that 
produces the opposite value at the node. The 
functionalities of these networks are compared in order to 
detect when the change in the node’s behavior influences 
the values at the POs. To this end, the two networks are 
transformed into a miter [1] derived by combining the pairs 
of PIs with the same names and feeding the pairs of POs 
with the same names into EXOR gates, which are ORed to 
produce the only output of the miter (Figure 4). 

5.1 Computation using BDDs 
The BDD-based CDC computation begins by deriving 

the global functions of the primary outputs of the two 

networks, {fi(x)} and {fi’(x)}, where the index i varies over 
the POs. Next, the function of the output of the miter, C(x), 
is derived, representing the care set in the global space: 

C(x) =∑i [fi(x) ⊕ fi’(x)]. 
The ODCs of the node in the global space is the 

complement of the care set: 
ODC(x) = ( )xC = ∏i [fi(x) ≡ fi’(x)], 

The local CDCs are computed by imaging the global 
ODCs into the local space. To this end, mapping M(x,y) is 
used, which relates the global and local spaces:  

CDC(y) = ∀x [M(x,y) ⇒ ODC(x)]. 
This computation adds the SDCs, ( , )M x y , to the already 

computed ODCs. It requires that the don’t-care minterm y 
was a don’t-care for all assignments of the PI variables x. 
If external don’t-cares are present, they are added to the 
observability don’t-cares. 

 
Figure 4. Illustration of CDC computation. 

5.2 Computation using SAT  
The use of SAT [9][15] in the CDC computation is 

similar to the use of SAT in combinational equivalence 
checking [4]. A solution of the SAT problem represented 
by the miter in Figure 4 gives satisfying assignments of all 
signals producing value 1 at the output of the miter. The 
values of variables y (the inputs of the node) in this 
solution form a care set minterm in the local space of the 
node. This is because, for them, we know the values of the 
PI variables x, such that at least one pair of POs produces 
different values. 

All the care set minterms in terms of variables y are 
collected by enumerating through the satisfying 
assignments of the SAT problem and adding breaking 
clauses for each of them. A similar method of generating 
the satisfying assignments is described in [10], except that 
we do not undo the implication graph when a new 
satisfying assignment is found. We treat satisfying 
assignments similar to conflicts. In both cases, non-
chronological backtracking is performed to the highest 
level determined using the new clause. 
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The SAT-based CDC computation is summarized in 
Figure 5. The top-level procedure CompleteDC takes node 
N and its context S given by the network, or by a window 
constructed for node N. Procedure ConstructMiter applies 
structural hashing [8] to the miter of the two copies of S 
shown in Figure 4. The resulting compact AND-INV graph 
G is constructed in one DFS traversal of the nodes in S, 
without actual duplication.  

Random simulation of G reduces the runtime of the SAT 
solver. Indeed, each assignment of the PIs variables x, such 
that the output of the miter is 1, detects a care minterm of 
the node in terms of variables y. Only unique care 
minterms are collected. In practice, simulation is 
performed until “saturation” when, after a fixed number of 
rounds of bit-parallel simulation (typically, 5-10 rounds), 
the simulator did not turn up a new care minterm.  

The CNF P is the conjunction of clauses derived from G 
and the complement of F1, the part of care set derived by 
random simulation. The CNF of G is derived using a well-
known technique, which adds three CNF clauses for each 
AND gates. For example, the clauses added for the gate 
ab = c are: c + a, c  + b, a + b + c. The only other clause 
added to the CNF is the clause asserting that the PO of the 
miter is equal to 1. 

The SAT solver enumerates through the satisfying 
solutions, F2, of the resulting problem representing the 
remaining part of the care set. In practice, it often happens 
that the SAT problem has no solutions (F2 = 0). In such 
cases, SAT is only useful to prove the completeness of the 
care set derived by random simulation.  

 
function CompleteDC( node N , context S ) 
{ 
     aig G = ConstructMiter( S, N ); 
     function F1 = RandomSimulation( G ); 
     cnf P = CircuitToCNF( G ) ∧ FunctionToCNF( 1F  ); 
     function F2 = SatSolutions( P ); 

     return 21 FF + ; 
} 

Figure 5. Pseudo-code of SAT-based CDC 
computation. 

This approach solves the SAT problem by enumerating 
through the satisfying assignments, which represent 
minterms of the care set of the given node. Therefore, it is 
limited to nodes with roughly 10 inputs or less, which is 
typically the case for most Boolean networks. To make the 
approach work for networks nodes with a larger number of 
inputs, the implementation of the SAT solver should be 
further modified to return incomplete satisfying 
assignments, which correspond to cubes rather than 
minterms of the care set.  

6 Experimental results  

The methods for computing CDCs of a node in the 
context of both a window and the whole network are 
implemented in the MVSIS environment [18].  

The SAT-based part is implemented using MiniSat [3], 
an “extensible SAT solver”. Despite its small size (600 
lines of C++ code written without STL), MiniSat is very 
efficient. In our experiments, it outperformed several 
popular SAT solvers. Moreover, the implementation of 
MiniSat is easy to understand and modify, in complete 
agreement with the original intention of its developers. 

The experiments are divided into several parts, in 
correspendence with the contributions of the paper. All 
measurements are made on a Windows XP computer with 
a 1.6GHz CPU and 1Gb RAM, although less than 256Mb 
of RAM are needed for the largest benchmarks in Table 4.  

The resulting networks are verified using a SAT-based 
verifier in MVSIS designed along the lines of [4][6].  

6.1 Experiment 1: Comparing CODCs vs. CDCs  
First, we compared the optimization potential of CODCs 

and CDCs. The BDD-based don’t-care computation flow 
was used in both cases. We considered the largest MCNC 
benchmarks [23], for which BDDs could be constructed. 
Table 1 compares the runtime and the number of literals of 
the CODC-based command full_simplify from the 
distribution of SIS, and the new CDC-based command mfs 
implemented in MVSIS and later ported to SIS. The SIS 
version was used in this experiment. Both full_simplify and 
mfs perform Boolean resubstitution followed by the SOP 
minimization as part of don’t-care-based optimization. 
Network sweep in SIS, which eliminates constants and 
single-input nodes and removes internal nodes without 
fanouts, is performed before and after both commands.  

The first column in Table 1 lists the benchmark names, 
followed by five columns containing the number of 
literals: (1) after initial sweeping only (“sweep”) (which is 
the starting point of the other columns), (2) after 
full_simplify (“fs”), (3) after mfs without the “advanced 
features” (“mfs”), (4) after mfs with 2 x 2 windowing 
without the “advanced features” (“mfsw”), and (5) after 
mfs with the advanced features enabled (“MFS”). The 
advanced features include on-the-fly merging of nodes 
with functionality equivalent up to complementation and 
phase-assignment, performed as part of optimization. In 
columns (2) and (3) these features are disabled to have a 
fair comparison with full_simplify. Some benchmarks 
could not be processed by full_simplify because of the 
large BDD sizes (indicated by the dash in the table). 

The last three columns give the runtimes in seconds. The 
bottom line shows the average of the ratios of the 
improvements in the number of literals, achieved by each 
command, compared to the number of literals in the 



original (swept) benchmarks. The asterisk in Table 1 
indicates that, to compare against fs, the averages of the 
ratios are taken only over the 11 examples where fs could 
complete. 

Table 1. Comparing CODCs vs. CDCs. 

Literals in factored forms Runtime, sec Name 

sweep   fs  mfs mfsw MFS fs mfs mfsw
dalu 2976 2140 1741 2250 1747 64.8 2.1 0.8
des 6101 5677 5616 5920 5334 8.1 3.7 3.7
frg2 2010 1454 1440 1477 1409 5.1 0.6 0.5
i10 4355 - 3809 3853 3694 - 82.2 1.2
k2 2928 2889 2663 2878 2641 6.2 3.9 3.3
Pair 2420 2179 2143 2151 2139 3.5 2.9 0.4
c1355 992 984 992 992 992 22.8 86.7 0.2
c1908 1058 869 870 869 754 12.4 10.9 0.3
c2670 1570 1189 1215 1411 1195 4.9 2.8 0.3
c432 335 298 288 299 288 2.2 0.9 0.3
c499 576 568 576 576 576 1.0 13.0 0.1
c5315 3531 3184 3168 3176 2951 31.5 7.3 0.9
c7552 4750 - 4057 4079 3594 - 50.0 1.4
c880 648 625 624 625 624 1.2 7.2 0.1
Ave 1.00 0.88* 0.86 0.90 0.83 1.00 0.87 0.07
 
The noticeable improvement in runtimes from 

full_simplify to mfs are because they are implemented in a 
different way and use different BDD variable orders (in 
general fs should be faster). Comparing literals, Table 1 
shows that the CDCs outperform CODCs in the context of 
the whole network (columns “fs” vs. “mfs”). Although not 
included in the tables, other experiments have shown that, 
on average over all considered benchmarks, the CDCs 
typically contain 20% more don’t-care minterms in the 
local spaces of the nodes, compared to the CODCs. 

For CDCs with windowing (column “mfsw”), Table 1 
shows that the literal count is almost as good as in the case 
of CODCs in the context of the whole network (column 
“fs”), but the runtime is only 7% of that of ”fs”. 
Additionally, window-based optimization (mfsw) is 
applicable to very large circuits well beyond the scope of 
full_simplify in SIS or mfs . 

6.2 Experiment 2: The effect of windowing  
The second experiment demonstrates the use of 

windowing for trading optimization quality for runtime in 
the BDD-based don’t-care computation flow in MVSIS. 
Table 2 compares the number of literals in the factored 
forms of the original benchmarks after sweeping (“sweep”) 
with the number of literals after optimization, which 
includes SOP minimization, Boolean resubstitution, and 
phase-assignment. Identification of nodes with equivalent 
global functionality was not enabled in this experiment. 
The optimization was applied (1) without don’t-cares, 
which corresponds to window 0x0 (“mfs –w 00”), (2) with 

don’t-cares derived using window 2 x 2 (“mfs –w 22”), and 
(3) with don’t-cares computed in the scope of the entire 
network, i.e. infinite window (“mfs”). The columns “time” 
lists the runtime in seconds for each of the cases. The 
bottom line shows the averages of the ratios of all the 
cases. 

Table 2. Performance depending on window size. 
sweep mfs –w 00  mfs –w 22 mfs Name

lits lits time lits time lits time 
dalu 2976 2272 0.5 2250 0.8 1724 2.6
des 6101 6065 2.6 5920 4.0 5920 9.6
frg2 2010 1687 0.4 1477 0.6 1429 4.3
i10 4355 4110 0.8 3851 1.1 3703 290.3
k2 2928 2878 3.1 2878 3.6 2715 9.9
pair 2420 2187 0.4 2151 0.5 2143 7.7
c1355 992 992 0.1 992 0.2 985 156.6
c1908 1058 870 0.3 869 0.4 861 36.0
c2670 1570 1453 0.4 1370 0.4 1167 12.2
c432 335 335 0.1 299 0.3 288 1.9
c499 576 576 0.1 576 0.2 568 51.5
c5315 3531 3224 0.8 3176 1.1 3174 9.2
c7552 4750 4181 0.8 4079 1.3 3906 54.6
c880 648 625 0.1 625 0.1 625 117.4
Ave 1.00 0.92 1.00 0.89 1.55 0.86 279.2
 
Table 2 demonstrates that windowing is very efficient in 

trading the quality of optimization for runtime, by setting 
the scope for the don’t-care computation. Using 2 x 2 
windows gives, on average, intermediate results in terms of 
quality between not using don’t-cares, on the one hand, 
and using the entire network as the context, on the other 
hand. The runtime of 2 x 2 windowing is only 55% longer 
than the runtime without don’t-cares, while considering the 
whole network as the context increases the runtime more 
than two orders of magnitude. 

The difference in the number of literals after running mfs 
in SIS (Table 1, column “MFS”) and in MVSIS (Table 2, 
column “mfs/lits”) is because in Table 2, sweeping of 
nodes with equivalent functionality was disabled. In 
general, minor variations in the performance of different 
implementations is because (a) the amount of don’t-cares 
computed for the nodes depends on the order that the 
nodes are considered for optimization and (b) employing 
similar resource limits (timeouts in BDD computation and 
image computation) often leads to computations being 
aborted at different moments, resulting in different subsets 
of CDCs.  

The runtime difference between mfs in SIS and mfs in 
MVSIS has two reasons: (a) computations in MVSIS use a 
general multi-valued approach [11][12], and therefore they 
are more complex, compared to an efficient specialized 
approach described in this paper for binary benchmarks, 



and (b) the resource limits are currently better fine-tuned in 
the SIS version. 

6.3 Experiment 3: BDDs vs. SAT for CDC 
computation  

The third experiment compares the speed of don’t-care 
computation only, using BDDs and SAT for windows of 
different sizes. The benchmarks in Table 3 are the largest 
ITC’99 benchmarks [5] (b-files), the largest sequential 
circuits from the MCNC benchmarks [23] (s-files), and the 
combinational logic extracted from the cores of the 
PicoJava microprocessor [16] (pj-files). Table 4 gives the 
number of inputs, outputs, and latches in the selected 
benchmarks. 

Three window sizes were considered (1x1, 2x2, and 
4x4). In each case, the runtimes in seconds of the BDD-
based computation (“BDDs”) and the SAT-based 
computation (“SAT”) are reported. It was formally verified 
that the complete don’t-cares computed in each case by 
BDDs and SAT using the same window are identical. The 
bottom line in Table 3 shows the average of the ratios in all 
cases. 

The measurements in Table 3 are not exactly comparable 
due to different pruning techniques employed by the two 
computation flows. One pruning technique uses window 
rescaling, which reduces the scope of a window if its size 
exceeds a predefined limit. For example, if a 4x4 window 
turns out to be too large, it is automatically replaced by a 
3x3 window. For BDDs, the window is rescaled if it has 
more than 30 leaves and 15 roots, while for SAT the 
window is rescaled if it contains more than 500 AND-gates 
after structural hashing.  

Table 3. BDD vs. SAT for CDC computation. 

Window 1 x 1 Window 2 x 2 Window 4 x 4 Name 

BDDs SAT BDDs SAT BDDs SAT 
b14 1.47 0.67 3.50 0.84 12.29 1.24
b15 0.84 0.99 3.11 1.20 26.70 5.30
b17 2.97 1.33 6.69 3.21 48.59 4.37
b20 2.98 2.18 6.19 2.19 20.18 2.23
b21 3.42 2.13 6.48 2.79 18.34 2.42
b22 4.50 3.18 9.62 4.86 27.80 3.24
s15850 0.17 0.26 0.39 0.28 4.14 0.30
s35932 0.28 0.20 0.44 0.28 1.10 0.53
s38417 1.16 0.50 3.40 0.55 18.78 1.15
pj1 1.69 1.58 5.75 1.38 15.26 2.35
pj2 0.20 0.20 0.28 0.26 3.66 0.28
Ave 1.00 0.80 1.00 0.46 1.00 0.14

 
Table 3 indicates that the SAT-based computations are 

faster and scale better than the BDD-based ones. Thus, for 
1x1 windows, SAT is on average 20% faster; for 2x2 
windows, it is over 2 times faster while for 4x4 windows, 

it is over 7 times faster. This ratio increases further with 
the window size. 

6.4 Experiment 4: The cumulative effect of 
improvements  

Table 4 shows the results of network optimization using 
the SAT-based flow for the benchmarks from Table 3. 
These benchmarks are relatively large. As a result, BDD-
based methods, full_simplify in SIS and mfs in MVSIS 
without windowing, cannot be applied.  

 
Table 4. Network optimization using CDCs, windowing 

and SAT. 

Literals in factored forms Runtime, sName In/Out/Latch

sweep mfsw script mfsw script
b14 32 / 54 / 245 17388 10664 7911 3.9 18.0
b15 36 / 70 / 449 16244 15056 10948 6.1 22.9
b17 37 / 97 / 1415 57311 49067 37877 35.7 104.8
b20 32 / 22 / 490 35149 21826 16813 7.6 55.0
b21 32 / 22 / 490 35908 22312 16932 9.3 51.1
b22 32 / 22 / 735 52276 33017 25174 13.5 59.8
s15850 14 / 87 / 597 7303 6350 4033 1.2 4.0
s35932 35 / 320 24408 20248 10986 4.2 16.7
s38417 28 / 106 18699 17327 13640 4.5 15.5
pj1 1769 / 1063/0 34828 30547 18076 9.5 37.0
pj2 690 / 429/0 7422 6464 3457 1.1 4.0
Ave 1.00 0.79 0.54 1.00 4.36

 
The first column of Table 4 lists the benchmark names. 

The second column shows the number of inputs, outputs, 
and latches. The next three columns contain the number of 
literals in the factored forms in (1) the original benchmark 
after sweeping (“sweep”), (2) after applying mfs with 2x2 
windowing (“mfsw”), and (3) as part of a script (“script”). 
The last two columns show the runtime in seconds for the 
two optimization options. 

The script used in this experiment was mvsis.rugged, 
which is similar to script.rugged from the SIS distribution, 
except that mvsis.rugged is implemented in MVSIS, except 
that whenever the CODC-based command full_simplify is 
used in SIS, the CDC-based mfs with 2x2 windows (mfs –
w 22) and SAT are used in MVSIS. 

Table 4 shows that the proposed don’t-care-based 
optimization flow can be applied to large circuits. This is 
because the don’t-care computation is performed in a 
window, and therefore is local and does not depend on the 
circuit size. The overall runtimes scale well with the 
problem size and is predictable; a rule of the thumb is for 
mfs –w 22, the computation takes about 1 second per 3000 
literals in the original netlist. 



7 Conclusions  

This paper contributes several improvements to the 
optimization of logic networks using don’t-cares: 
• Complete don’t-cares are used instead of compatible 

don’t-cares. Abandoning compatibility does not lead 
to any problems in runtime while increasing the 
scope of the don’t-cares computed. 

• To ensure robust computation of don’t-cares 
windowing is used. This technique noticeably 
reduces the runtime while computing a substantial 
subset of complete don’t-cares for each node. 

• A new implementation of the don’t-care 
computation using Boolean satisfiability is used, 
taking advantage of the recent improvements in the 
performance of SAT solvers [15]. The same set of 
don’t-cares is computed as in the corresponding 
BDD-based algorithm, but several times faster. 

The experiments described in the paper show that the 
proposed improvements enhance the optimization quality 
and reduce the runtime. The overall effect is that the 
computation of internal don’t-cares becomes very 
affordable, even for very large industrial networks.  

We believe that such ideas can be applied to other 
Boolean logic optimization methods  and will reduce the 
computational cost and improve optimality. As a result, 
these Boolean methods will become more affordable and 
may eventually replace the sub-optimal algebraic methods 
for a variety of tasks in logic synthesis. 
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