
SAT-Based Complete Don’t-Care Computation for Network Optimization

 Alan Mishchenko Robert K. Brayton
 Department of EECS Department of EECS
 University of California, Berkeley University of California, Berkeley
 alanmi@eecs.berkeley.edu brayton@eecs.berkeley.edu

Abstract

This paper describes an improved approach to Boolean
network optimization using internal don’t-cares. The
improvements concern the type of don’t-cares computed,
their scope, and the computation method. Instead of the
traditional compatible observability don’t-cares (CODCs),
we introduce and justify the use of complete don’t-cares
(CDC). To ensure the robustness of the don’t-care
computation for very large industrial networks, a
windowing scheme is implemented, which computes
substantial subsets of the CDCs in reasonable time.
Finally, we give a SAT-based don’t-care computation
algorithm, which is more efficient than BDD-based
algorithms. Experimental results confirm that these
improvements work well in practice. Complete don’t-cares
allow for a reduction in the number of literals compared to
the CODCs. Windowing guarantees robustness, even for
very large benchmarks, to which previous methods cannot
be applied. SAT reduces the runtime, making don’t-cares
affordable for a variety of other Boolean methods applied
to the network.

1 Introduction

Optimization of Boolean networks using don’t-cares
plays an important role in technology independent logic
synthesis and incremental re-synthesis of mapped netlists.
Traditionally, only satisfiability don’t-cares (SDCs) and
compatible observability don’t-cares (CODCs) have been
used [19]. The classical algorithm to compute CODCs [21]
implemented in SIS [22] became the method of choice for
many industrial tools. Later improvements to this
algorithm concerned a more robust implementation [20],
independence from the local function representation [2],
and generalization to multi-valued networks [7].

CODCs form a subset of the complete don’t-cares
(or complete flexibility) [12] projected onto a node by its
context in the multi-level network. It was shown
experimentally [11] that the computation of CDCs is
comparable in runtime and memory requirements, while,
as expected, the amount of don’t-cares computed is larger

than for CODCs. The presentation in [11][12] considers
the most general case of non-deterministic multi-valued
networks, leaving questions about its efficiency when
applied to purely binary networks.

The first contribution of this paper is in developing a
specialized version of the multi-valued don’t-care
computation algorithm [11][12], to work on binary
networks, and in showing that this algorithm leads to an
increase in optimization quality, due to the additional
freedom provided by the CDCs, compared to CODCs.

The traditional don’t-care optimization in SIS is
performed using the whole network as the context for each
node. This restricts the use of don’t-cares to small or
medium-sized networks. To apply the same method to
larger networks, the network can be partitioned with the
scope of computation limited to one partition at a time.
Such methods have not been published, but might be part
of some industrial tools. We suspect that partitioning for
don’t care computation is difficult, ad hoc, and
implementation dependent.

The second contribution of the paper concerns the
computation of don’t-cares in large industrial designs. We
propose a non-partitioning scheme, called windowing,
which efficiently trades quality for runtime in network
optimization. Windowing guarantees that the maximal
flexibility, within a context limited by a fixed number of
logic levels, is captured. Windowing is fast because
construction of a window for a node involves only a small
number of surrounding nodes, making it unnecessary to
traverse the whole network. Windowing is not a
partitioning scheme because each node has its own
window, which may overlap with windows computed for
other nodes. Finally, windowing is dynamic and can be
performed “on the fly”, without the need to duplicate or
otherwise modify the network or its parts. The latter
quality makes windowing useful for applications that
frequently update the network, e.g. decomposition-
mapping [13].

The third contribution of the paper concerns the use of
Boolean satisfiability [9][15], rather than BDDs or SOPs,
for the computation of don’t-cares. We show that SAT is
responsible for speed-ups in the computation, making
CDCs easy to compute and affordable enough, so that
many procedures, which previously relied on algebraic

methods, can now be extended to Boolean methods based
on don’t-cares.

In combination, these contributions provide improved
efficiency, quality, and ruggedness for technology
independent logic synthesis.

The paper is structured as follows: Section 2 establishes
the background. Section 3 defines CDCs and compares
them with CODCs. Section 4 presents windowing. Section
5 describes and compares BDD-based and SAT-based
approaches to the CDC computation. Section 6 gives
experimental results, and Section 7 concludes the paper.

2 Background

Definition. A completely specified Boolean function
(CSF) is a mapping from n-dimensional (n ≥ 0) Boolean
space into a single-dimensional one: {0,1}n → {0,1}.

A don’t-care for a logic function allows it to have either
0 or 1 as a possible value. If, for some input combinations,
the output of the function is a don’t-care, this function is
called an incompletely specified Boolean function (ISF).

An assignment of n Boolean variables is called a
minterm. A CSF has negative (positive) minterms, which
correspond to the assignments, for which it takes values 0
(1). The positive and negative minterms are called the care
minterms. An ISF additionally has don’t-care minterms,
which correspond to the assignments, for which the
function is flexible and can be either 0 or 1.

A CSF is compatible with an ISF (implements the ISF),
if the CSF can be derived from the ISF by assigning either
0 or 1 to each don’t-care minterm.

Given several ISFs, the largest ISF is the one that has the
largest number of don’t-care minterms.

Definition. A Boolean network is a directed acyclic
graph with nodes represented by Boolean functions. The
sources of the graph are the primary inputs (PIs) of the
network; the sinks are the primary outputs (POs).

Typically, the nodes and their output signals are named
the same. The output of a node may be an input to other
nodes called its fanouts. The inputs of a node are called its
fanins. If there is a path from node A to B, then A is said to
be in the transitive fanin of B and B in the transitive fanout
of A. The transitive fanin of B, TFI(B), includes B and all
nodes in its transitive fanin, including the PIs. The
transitive fanout of B, TFO(B), includes B and all nodes in
its transitive fanout including the POs.

The functionality of a node in terms of its immediate
fanins is called the local function of the node. The
functionality in terms of the primary inputs of the network
is called the global function.

3 Complete don’t-cares

Consider an individual node represented by its CSF. It is
not possible to change the node’s function without
changing the node’s behavior. However, the situation is
different when the node is considered in its context in the
network. In this case, the node’s function can often be
substantially modified, without changing the behavior of
the network. This is because other nodes prevent some
combinations of inputs from reaching the node as well as
hiding the node’s output from the POs under some
conditions.

The flexibility allowed in the implementation of a node
can be represented as an ISF. A don’t-care minterm of the
ISF represents a combination of the node’s input variables,
for which the value of the node’s output is not required for
the POs of the network to produce the correct values.

Definition. The complete don’t-cares (CDCs), or
complete flexibility (CF), of a node in the binary network,
is the largest ISF, whose don’t-care minterms represent
conditions when the output of the node does not influence
the values produced by the POs of the network.

The CDCs are important for network optimization
because replacing the node’s function by any CSF
compatible with the ISF representing a node’s CDCs, does
not change the functionality of the POs of the network.

A key observation about CDCs is that they are not
compatible. That is, some POs of the network may produce
incorrect values if CDCs are derived for several nodes and
used independently. In this sense CDCs differ from
CODCs [21]. However, if CDCs are computed and used
immediately to optimize a node before moving on to
another node, compatibility is not required. In this case, the
CDCs computed and used for each node reflect all prior
changes to the nodes.

The CDCs include two major parts, the satisfiability
don’t-cares (SDCs), which arise because some
combinations are not produced as the inputs of the node,
and the observability don’t-cares (ODCs), which arise
because under some conditions the output of the node does
not matter. Figure 1 shows a situation when node F has
SDCs in the local space (x = 0, y = 1) due to limited
controlability, while node G has ODCs in the global space
(a = 1, b = 1) due to the limited observability.

Figure 1. Example of SDCs and ODCs.

F

a b G

x y

b ca

Don’t-care computations are traditionally performed in
the context of the whole Boolean network, as exemplified
by SIS [22]. In the case of CDCs, this approach guarantees
that the don’t-cares computed are the largest don’t-cares
possible for a node.

However, in many cases, the network is too large, and
the computation becomes slow or impossible. In such
cases, a method of limiting the scope is needed to restrict
the computation to a relatively small sub-network. The
don’t-cares computed for the node in this sub-network
should be complete with respect to the sub-network, but
will not be complete in general, i.e. considering a larger
sub-network could result in more don’t-cares with a likely
increase the runtime.

Not only the size but also the “shape” of the sub-network
is critical to get sufficiently large don’t-cares. If a sub-
network is large but does not include the nodes responsible
for producing most of the don’t-cares, the computation will
be ineffective.

We developed a windowing method, which limits the
scope of the don’t-care computation to only a few logic
levels on the fanin/fanout side of the node. An important
observation is that reconvergence is responsible for don’t
cares; hence along with the near TFI and TFO of the node,
a window should contain all re-convergent paths that begin
and terminate in these nodes.

For the special case, when the inputs to the window have
disjoint supports in terms of the PIs, while all outputs of
the window belong to the POs of the network, the CDCs
computed for a node in the window are equal to the CDCs
when the whole network is considered.

4 Windowing

This section contains a detailed discussion of the
windowing algorithm introduced in [13].

Definition. Given a directed acyclic graph and two non-
overlapping subsets of its nodes, one set is called the leaf
set and the other the root set, if every path from any node
in the root set towards the sources of the graph passes
through some node in the leaf set.

Definition. Given a directed acyclic graph and two
subsets of its nodes, which are in the leaves/roots
relationship, a window is a subset of nodes of the graph,
which contains the roots and all nodes between the root set
and the leaf set. The nodes in the leaf set are delimiters and
do not belong to the set of nodes included in the window.

Definition. A path between a pair of nodes is distance-k
if it spans exactly k edges between the pair.

Definition. Two nodes are distance-k from each other if
the shortest path between them is distance-k.

The pseudo-code in Figure 2 and the example in Figure 3
describe the flow of the window computation algorithm.
Procedure Window takes a node and two integers, which

define the number of logic levels on the fanin/fanout sides
of the node to be included in the window. It returns the leaf
set and the root set of the window. With minor
modifications, this procedure can compute a window for a
set of nodes, which, in general, can be neither adjacent nor
in the fanin/fanout relationship.

nodeset Window(node N, int nFanins, int nFanouts)
{
 nodeset I1 = CollectNodesTFI({N}, nFanins);
 nodeset O1 = CollectNodesTFO({N}, nFanouts);
 nodeset I2 = CollectNodesTFI(O1, nFanins + nFanouts);
 nodeset O2 = CollectNodesTFO(I1, nFanins + nFanouts);
 nodeset S = I2 ∩ O2;
 nodeset L = CollectLeaves(S);
 nodeset R = CollectRoots(S);
 return (L, R);
}

Figure 2. Computation of a window for a node.

The procedure CollectNodesTFI takes a set S of nodes

and an integer number m, m ≥ 0, and return a set of nodes
on the fanin side, which are distance-m or less from the
nodes in S. An efficient implementation of this procedure
for small m (for most applications, m ≤ 10) iterates through
the nodes that are distance-k (0 ≤ k ≤ m) from the given set.
The distance-0 nodes are the original nodes. The distance-
(k+1) nodes are found by collecting those fanins of the
distance-k nodes, which were not visited before. The
procedure CollectNodesTFO is similar.

Figure 3. Example of a 1 x 1 window.

Procedures CollectLeaves and CollectRoots take a set of
window’s internal nodes and determine the leaves and
roots of this window. The leaves are the nodes that (a) do
not belong to the given set, and (b) are fanins of at least
one of the node in the set. Similarly, the roots are the nodes
that (a) belong to the given set, and (b) are fanins of at
least one node not in the set. Note that some of the roots
computed in this way are not in the TFO cone of the
original node(s), for which the window is being computed,
and therefore can be dropped without violating the

N

O1 O1

S

I1

S

S

S

I1

definition of the window and undermining the usefulness
of the window for the don’t-care computation.

We typically refer to the window constructed for a node
by including n TFI logic levels and m TFO logic levels as
an n x m window. For example, Figure 3 shows a 1 x 1
window for node N in a network. The nodes labeled I1, O1
and S are in correspondence with the pseudo-code in
Figure 3. The window’s roots (top) and leaves (bottom) are
shaded. Note that the nodes labeled by S do not belong to
the TFI and TFO cones of node N, but represent the
reconvergent paths in the vicinity of node N. The left-most
and right-most roots can be dropped, as explained above.

5 Don’t-care computation

The network optimization discussed in this paper iterates
through all the nodes of the network. For each node, the
CDCs are computed and used to simplify the node before
optimizing the next node. The computation of CDCs for a
node can be performed in the context of the whole
network, if the network is small; otherwise, a window is
constructed for the node. Without limiting the generality of
the CDC computation methods, we discuss these methods
as applied to a node in the whole network. If a window is
used, the network is the sub-network defined by the
window containing the node.

The general approach to computing the CDCs of a node
in the non-deterministic multi-valued network [11][12]
relies on the use of an additional variable z for the output
of the node, and the computation of Boolean relations in
terms of the PI variables, the PO variables, and variable z.

This approach can be simplified for a node in a
deterministic binary network; the computation can be
performed without variable z or Boolean relations. In both
BDD-based and SAT-based implementations, we consider
two instances of the same network, which only differ in an
inverter at the output of the given node in the second copy
of the network (Figure 4). This duplication of the network
is an imaginary construction, done for the sake of the
presentation and not actually implemented in software.

The first network represents the original behavior, while
the second represents the behavior of the network that
produces the opposite value at the node. The
functionalities of these networks are compared in order to
detect when the change in the node’s behavior influences
the values at the POs. To this end, the two networks are
transformed into a miter [1] derived by combining the pairs
of PIs with the same names and feeding the pairs of POs
with the same names into EXOR gates, which are ORed to
produce the only output of the miter (Figure 4).

5.1 Computation using BDDs
The BDD-based CDC computation begins by deriving

the global functions of the primary outputs of the two

networks, {fi(x)} and {fi’(x)}, where the index i varies over
the POs. Next, the function of the output of the miter, C(x),
is derived, representing the care set in the global space:

C(x) =∑i [fi(x) ⊕ fi’(x)].
The ODCs of the node in the global space is the

complement of the care set:
ODC(x) = ()xC = ∏i [fi(x) ≡ fi’(x)],

The local CDCs are computed by imaging the global
ODCs into the local space. To this end, mapping M(x,y) is
used, which relates the global and local spaces:

CDC(y) = ∀x [M(x,y) ⇒ ODC(x)].
This computation adds the SDCs, (,)M x y , to the already

computed ODCs. It requires that the don’t-care minterm y
was a don’t-care for all assignments of the PI variables x.
If external don’t-cares are present, they are added to the
observability don’t-cares.

Figure 4. Illustration of CDC computation.

5.2 Computation using SAT
The use of SAT [9][15] in the CDC computation is

similar to the use of SAT in combinational equivalence
checking [4]. A solution of the SAT problem represented
by the miter in Figure 4 gives satisfying assignments of all
signals producing value 1 at the output of the miter. The
values of variables y (the inputs of the node) in this
solution form a care set minterm in the local space of the
node. This is because, for them, we know the values of the
PI variables x, such that at least one pair of POs produces
different values.

All the care set minterms in terms of variables y are
collected by enumerating through the satisfying
assignments of the SAT problem and adding breaking
clauses for each of them. A similar method of generating
the satisfying assignments is described in [10], except that
we do not undo the implication graph when a new
satisfying assignment is found. We treat satisfying
assignments similar to conflicts. In both cases, non-
chronological backtracking is performed to the highest
level determined using the new clause.

fi(x) fi’(x)

x x

y y

C(x)

The SAT-based CDC computation is summarized in
Figure 5. The top-level procedure CompleteDC takes node
N and its context S given by the network, or by a window
constructed for node N. Procedure ConstructMiter applies
structural hashing [8] to the miter of the two copies of S
shown in Figure 4. The resulting compact AND-INV graph
G is constructed in one DFS traversal of the nodes in S,
without actual duplication.

Random simulation of G reduces the runtime of the SAT
solver. Indeed, each assignment of the PIs variables x, such
that the output of the miter is 1, detects a care minterm of
the node in terms of variables y. Only unique care
minterms are collected. In practice, simulation is
performed until “saturation” when, after a fixed number of
rounds of bit-parallel simulation (typically, 5-10 rounds),
the simulator did not turn up a new care minterm.

The CNF P is the conjunction of clauses derived from G
and the complement of F1, the part of care set derived by
random simulation. The CNF of G is derived using a well-
known technique, which adds three CNF clauses for each
AND gates. For example, the clauses added for the gate
ab = c are: c + a, c + b, a + b + c. The only other clause
added to the CNF is the clause asserting that the PO of the
miter is equal to 1.

The SAT solver enumerates through the satisfying
solutions, F2, of the resulting problem representing the
remaining part of the care set. In practice, it often happens
that the SAT problem has no solutions (F2 = 0). In such
cases, SAT is only useful to prove the completeness of the
care set derived by random simulation.

function CompleteDC(node N , context S)
{
 aig G = ConstructMiter(S, N);
 function F1 = RandomSimulation(G);
 cnf P = CircuitToCNF(G) ∧ FunctionToCNF(1F);
 function F2 = SatSolutions(P);

 return 21 FF + ;
}

Figure 5. Pseudo-code of SAT-based CDC
computation.

This approach solves the SAT problem by enumerating
through the satisfying assignments, which represent
minterms of the care set of the given node. Therefore, it is
limited to nodes with roughly 10 inputs or less, which is
typically the case for most Boolean networks. To make the
approach work for networks nodes with a larger number of
inputs, the implementation of the SAT solver should be
further modified to return incomplete satisfying
assignments, which correspond to cubes rather than
minterms of the care set.

6 Experimental results

The methods for computing CDCs of a node in the
context of both a window and the whole network are
implemented in the MVSIS environment [18].

The SAT-based part is implemented using MiniSat [3],
an “extensible SAT solver”. Despite its small size (600
lines of C++ code written without STL), MiniSat is very
efficient. In our experiments, it outperformed several
popular SAT solvers. Moreover, the implementation of
MiniSat is easy to understand and modify, in complete
agreement with the original intention of its developers.

The experiments are divided into several parts, in
correspendence with the contributions of the paper. All
measurements are made on a Windows XP computer with
a 1.6GHz CPU and 1Gb RAM, although less than 256Mb
of RAM are needed for the largest benchmarks in Table 4.

The resulting networks are verified using a SAT-based
verifier in MVSIS designed along the lines of [4][6].

6.1 Experiment 1: Comparing CODCs vs. CDCs
First, we compared the optimization potential of CODCs

and CDCs. The BDD-based don’t-care computation flow
was used in both cases. We considered the largest MCNC
benchmarks [23], for which BDDs could be constructed.
Table 1 compares the runtime and the number of literals of
the CODC-based command full_simplify from the
distribution of SIS, and the new CDC-based command mfs
implemented in MVSIS and later ported to SIS. The SIS
version was used in this experiment. Both full_simplify and
mfs perform Boolean resubstitution followed by the SOP
minimization as part of don’t-care-based optimization.
Network sweep in SIS, which eliminates constants and
single-input nodes and removes internal nodes without
fanouts, is performed before and after both commands.

The first column in Table 1 lists the benchmark names,
followed by five columns containing the number of
literals: (1) after initial sweeping only (“sweep”) (which is
the starting point of the other columns), (2) after
full_simplify (“fs”), (3) after mfs without the “advanced
features” (“mfs”), (4) after mfs with 2 x 2 windowing
without the “advanced features” (“mfsw”), and (5) after
mfs with the advanced features enabled (“MFS”). The
advanced features include on-the-fly merging of nodes
with functionality equivalent up to complementation and
phase-assignment, performed as part of optimization. In
columns (2) and (3) these features are disabled to have a
fair comparison with full_simplify. Some benchmarks
could not be processed by full_simplify because of the
large BDD sizes (indicated by the dash in the table).

The last three columns give the runtimes in seconds. The
bottom line shows the average of the ratios of the
improvements in the number of literals, achieved by each
command, compared to the number of literals in the

original (swept) benchmarks. The asterisk in Table 1
indicates that, to compare against fs, the averages of the
ratios are taken only over the 11 examples where fs could
complete.

Table 1. Comparing CODCs vs. CDCs.

Literals in factored forms Runtime, sec Name

sweep fs mfs mfsw MFS fs mfs mfsw
dalu 2976 2140 1741 2250 1747 64.8 2.1 0.8
des 6101 5677 5616 5920 5334 8.1 3.7 3.7
frg2 2010 1454 1440 1477 1409 5.1 0.6 0.5
i10 4355 - 3809 3853 3694 - 82.2 1.2
k2 2928 2889 2663 2878 2641 6.2 3.9 3.3
Pair 2420 2179 2143 2151 2139 3.5 2.9 0.4
c1355 992 984 992 992 992 22.8 86.7 0.2
c1908 1058 869 870 869 754 12.4 10.9 0.3
c2670 1570 1189 1215 1411 1195 4.9 2.8 0.3
c432 335 298 288 299 288 2.2 0.9 0.3
c499 576 568 576 576 576 1.0 13.0 0.1
c5315 3531 3184 3168 3176 2951 31.5 7.3 0.9
c7552 4750 - 4057 4079 3594 - 50.0 1.4
c880 648 625 624 625 624 1.2 7.2 0.1
Ave 1.00 0.88* 0.86 0.90 0.83 1.00 0.87 0.07

The noticeable improvement in runtimes from

full_simplify to mfs are because they are implemented in a
different way and use different BDD variable orders (in
general fs should be faster). Comparing literals, Table 1
shows that the CDCs outperform CODCs in the context of
the whole network (columns “fs” vs. “mfs”). Although not
included in the tables, other experiments have shown that,
on average over all considered benchmarks, the CDCs
typically contain 20% more don’t-care minterms in the
local spaces of the nodes, compared to the CODCs.

For CDCs with windowing (column “mfsw”), Table 1
shows that the literal count is almost as good as in the case
of CODCs in the context of the whole network (column
“fs”), but the runtime is only 7% of that of ”fs”.
Additionally, window-based optimization (mfsw) is
applicable to very large circuits well beyond the scope of
full_simplify in SIS or mfs .

6.2 Experiment 2: The effect of windowing
The second experiment demonstrates the use of

windowing for trading optimization quality for runtime in
the BDD-based don’t-care computation flow in MVSIS.
Table 2 compares the number of literals in the factored
forms of the original benchmarks after sweeping (“sweep”)
with the number of literals after optimization, which
includes SOP minimization, Boolean resubstitution, and
phase-assignment. Identification of nodes with equivalent
global functionality was not enabled in this experiment.
The optimization was applied (1) without don’t-cares,
which corresponds to window 0x0 (“mfs –w 00”), (2) with

don’t-cares derived using window 2 x 2 (“mfs –w 22”), and
(3) with don’t-cares computed in the scope of the entire
network, i.e. infinite window (“mfs”). The columns “time”
lists the runtime in seconds for each of the cases. The
bottom line shows the averages of the ratios of all the
cases.

Table 2. Performance depending on window size.
sweep mfs –w 00 mfs –w 22 mfs Name

lits lits time lits time lits time
dalu 2976 2272 0.5 2250 0.8 1724 2.6
des 6101 6065 2.6 5920 4.0 5920 9.6
frg2 2010 1687 0.4 1477 0.6 1429 4.3
i10 4355 4110 0.8 3851 1.1 3703 290.3
k2 2928 2878 3.1 2878 3.6 2715 9.9
pair 2420 2187 0.4 2151 0.5 2143 7.7
c1355 992 992 0.1 992 0.2 985 156.6
c1908 1058 870 0.3 869 0.4 861 36.0
c2670 1570 1453 0.4 1370 0.4 1167 12.2
c432 335 335 0.1 299 0.3 288 1.9
c499 576 576 0.1 576 0.2 568 51.5
c5315 3531 3224 0.8 3176 1.1 3174 9.2
c7552 4750 4181 0.8 4079 1.3 3906 54.6
c880 648 625 0.1 625 0.1 625 117.4
Ave 1.00 0.92 1.00 0.89 1.55 0.86 279.2

Table 2 demonstrates that windowing is very efficient in

trading the quality of optimization for runtime, by setting
the scope for the don’t-care computation. Using 2 x 2
windows gives, on average, intermediate results in terms of
quality between not using don’t-cares, on the one hand,
and using the entire network as the context, on the other
hand. The runtime of 2 x 2 windowing is only 55% longer
than the runtime without don’t-cares, while considering the
whole network as the context increases the runtime more
than two orders of magnitude.

The difference in the number of literals after running mfs
in SIS (Table 1, column “MFS”) and in MVSIS (Table 2,
column “mfs/lits”) is because in Table 2, sweeping of
nodes with equivalent functionality was disabled. In
general, minor variations in the performance of different
implementations is because (a) the amount of don’t-cares
computed for the nodes depends on the order that the
nodes are considered for optimization and (b) employing
similar resource limits (timeouts in BDD computation and
image computation) often leads to computations being
aborted at different moments, resulting in different subsets
of CDCs.

The runtime difference between mfs in SIS and mfs in
MVSIS has two reasons: (a) computations in MVSIS use a
general multi-valued approach [11][12], and therefore they
are more complex, compared to an efficient specialized
approach described in this paper for binary benchmarks,

and (b) the resource limits are currently better fine-tuned in
the SIS version.

6.3 Experiment 3: BDDs vs. SAT for CDC
computation

The third experiment compares the speed of don’t-care
computation only, using BDDs and SAT for windows of
different sizes. The benchmarks in Table 3 are the largest
ITC’99 benchmarks [5] (b-files), the largest sequential
circuits from the MCNC benchmarks [23] (s-files), and the
combinational logic extracted from the cores of the
PicoJava microprocessor [16] (pj-files). Table 4 gives the
number of inputs, outputs, and latches in the selected
benchmarks.

Three window sizes were considered (1x1, 2x2, and
4x4). In each case, the runtimes in seconds of the BDD-
based computation (“BDDs”) and the SAT-based
computation (“SAT”) are reported. It was formally verified
that the complete don’t-cares computed in each case by
BDDs and SAT using the same window are identical. The
bottom line in Table 3 shows the average of the ratios in all
cases.

The measurements in Table 3 are not exactly comparable
due to different pruning techniques employed by the two
computation flows. One pruning technique uses window
rescaling, which reduces the scope of a window if its size
exceeds a predefined limit. For example, if a 4x4 window
turns out to be too large, it is automatically replaced by a
3x3 window. For BDDs, the window is rescaled if it has
more than 30 leaves and 15 roots, while for SAT the
window is rescaled if it contains more than 500 AND-gates
after structural hashing.

Table 3. BDD vs. SAT for CDC computation.

Window 1 x 1 Window 2 x 2 Window 4 x 4 Name

BDDs SAT BDDs SAT BDDs SAT
b14 1.47 0.67 3.50 0.84 12.29 1.24
b15 0.84 0.99 3.11 1.20 26.70 5.30
b17 2.97 1.33 6.69 3.21 48.59 4.37
b20 2.98 2.18 6.19 2.19 20.18 2.23
b21 3.42 2.13 6.48 2.79 18.34 2.42
b22 4.50 3.18 9.62 4.86 27.80 3.24
s15850 0.17 0.26 0.39 0.28 4.14 0.30
s35932 0.28 0.20 0.44 0.28 1.10 0.53
s38417 1.16 0.50 3.40 0.55 18.78 1.15
pj1 1.69 1.58 5.75 1.38 15.26 2.35
pj2 0.20 0.20 0.28 0.26 3.66 0.28
Ave 1.00 0.80 1.00 0.46 1.00 0.14

Table 3 indicates that the SAT-based computations are

faster and scale better than the BDD-based ones. Thus, for
1x1 windows, SAT is on average 20% faster; for 2x2
windows, it is over 2 times faster while for 4x4 windows,

it is over 7 times faster. This ratio increases further with
the window size.

6.4 Experiment 4: The cumulative effect of
improvements

Table 4 shows the results of network optimization using
the SAT-based flow for the benchmarks from Table 3.
These benchmarks are relatively large. As a result, BDD-
based methods, full_simplify in SIS and mfs in MVSIS
without windowing, cannot be applied.

Table 4. Network optimization using CDCs, windowing

and SAT.

Literals in factored forms Runtime, sName In/Out/Latch

sweep mfsw script mfsw script
b14 32 / 54 / 245 17388 10664 7911 3.9 18.0
b15 36 / 70 / 449 16244 15056 10948 6.1 22.9
b17 37 / 97 / 1415 57311 49067 37877 35.7 104.8
b20 32 / 22 / 490 35149 21826 16813 7.6 55.0
b21 32 / 22 / 490 35908 22312 16932 9.3 51.1
b22 32 / 22 / 735 52276 33017 25174 13.5 59.8
s15850 14 / 87 / 597 7303 6350 4033 1.2 4.0
s35932 35 / 320 24408 20248 10986 4.2 16.7
s38417 28 / 106 18699 17327 13640 4.5 15.5
pj1 1769 / 1063/0 34828 30547 18076 9.5 37.0
pj2 690 / 429/0 7422 6464 3457 1.1 4.0
Ave 1.00 0.79 0.54 1.00 4.36

The first column of Table 4 lists the benchmark names.

The second column shows the number of inputs, outputs,
and latches. The next three columns contain the number of
literals in the factored forms in (1) the original benchmark
after sweeping (“sweep”), (2) after applying mfs with 2x2
windowing (“mfsw”), and (3) as part of a script (“script”).
The last two columns show the runtime in seconds for the
two optimization options.

The script used in this experiment was mvsis.rugged,
which is similar to script.rugged from the SIS distribution,
except that mvsis.rugged is implemented in MVSIS, except
that whenever the CODC-based command full_simplify is
used in SIS, the CDC-based mfs with 2x2 windows (mfs –
w 22) and SAT are used in MVSIS.

Table 4 shows that the proposed don’t-care-based
optimization flow can be applied to large circuits. This is
because the don’t-care computation is performed in a
window, and therefore is local and does not depend on the
circuit size. The overall runtimes scale well with the
problem size and is predictable; a rule of the thumb is for
mfs –w 22, the computation takes about 1 second per 3000
literals in the original netlist.

7 Conclusions

This paper contributes several improvements to the
optimization of logic networks using don’t-cares:
• Complete don’t-cares are used instead of compatible

don’t-cares. Abandoning compatibility does not lead
to any problems in runtime while increasing the
scope of the don’t-cares computed.

• To ensure robust computation of don’t-cares
windowing is used. This technique noticeably
reduces the runtime while computing a substantial
subset of complete don’t-cares for each node.

• A new implementation of the don’t-care
computation using Boolean satisfiability is used,
taking advantage of the recent improvements in the
performance of SAT solvers [15]. The same set of
don’t-cares is computed as in the corresponding
BDD-based algorithm, but several times faster.

The experiments described in the paper show that the
proposed improvements enhance the optimization quality
and reduce the runtime. The overall effect is that the
computation of internal don’t-cares becomes very
affordable, even for very large industrial networks.

We believe that such ideas can be applied to other
Boolean logic optimization methods and will reduce the
computational cost and improve optimality. As a result,
these Boolean methods will become more affordable and
may eventually replace the sub-optimal algebraic methods
for a variety of tasks in logic synthesis.

Acknowledgements

The authors gratefully acknowledge the support of the
California MICRO program and our industrial sponsors,
Intel, Fujitsu, and Synplicity. The authors thank Jordi
Cortadella for many helpful discussions.

References
[1] D. Brand. Verification of large synthesized designs. Proc.

ICCAD ’93, pp. 534 -537.
[2] R. K. Brayton. Compatible observability don’t-cares

revisited. Proc. IWLS ’01. pp. 121-126.
[3] N. Eén, N. Sörensson. An extensible SAT-solver. Proc. SAT

‘03. http://www.cs.chalmers.se/~een/Satzoo/
An_Extensible_SAT-solver.ps.gz

[4] E. Goldberg, M.Prasad, R.K.Brayton. Using SAT for
combinational equivalence checking. Proc. DATE ‘01, pp.
114 -121. http://eigold.tripod.com/

[5] ITC ’99 Benchmarks
http://www.cad.polito.it/tools/itc99.html

[6] F. Lu, L. Wang, K. Cheng, R. Huang. A circuit SAT solver
with signal correlation guided learning. Proc. DATE ‘03, pp.
892-897.

[7] Y. Jiang, R. K. Brayton. Don’t-cares and multi-valued logic
network optimization. Proc. ICCAD’00, pp. 520-525.
http://www-cad.eecs.berkeley.edu/Respep/Research/mvsis/

[8] A. Kuehlmann, V. Paruthi, F. Krohm, M. K. Ganai. Robust
Boolean reasoning for equivalence checking and functional
property verification. IEEE Trans. CAD, Vol. 21, No. 12,
December 2002, pp. 1377-1394.

[9] J. P. Marques-Silva, K. A. Sakallah, GRASP: A search
algorithm for propositional satisfiability, IEEE Trans. Comp,
vol. 48, no. 5, pp. 506-521, May 1999.

[10] K. McMillan. Applying SAT methods in unbounded
symbolic model checking. Proc. CAV ‘02, LNCS, vol. 2404,
pp. 250-264.

[11] A. Mishchenko, R. K. Brayton. Simplification of non-
deterministic multi-valued networks. Proc. ICCAD ‘02, pp.
557-562.

[12] A. Mishchenko, R. K. Brayton. A theory of non-
deterministic networks. Proc. ICCAD ’03, pp. 709-716.

[13] A. Mishchenko, X. Wang, T. Kam. A new enhanced
constructive decomposition and mapping algorithm. Proc.
DAC ‘03, pp. 143-147.

[14] A. Mishchenko. EXTRA library of the DD procedures.
http://www.ee.pdx.edu/~alanmi/research/extra.htm

[15] M. Moskewicz, C. Madigan, Y. Zhao, L.Zhang, S. Malik.
Chaff: engineering an efficient SAT solver. Proc. DAC ’01,
pp. 530–535.

[16] SUN Microelectronics. PicoJava Microprocessor Cores.
http://www.sun.com/microelectronics/picoJava/

[17] F. Somenzi. BDD package “CUDD v. 2.3.0.”
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[18] MVSIS Group. MVSIS. UC Berkeley.
http://www-cad.eecs.berkeley.edu/mvsis/

[19] H. Savoj, R. K. Brayton. The use of observability and
external don’t-cares for the simplification of multi-level
networks. Proc. DAC’ 90. pp. 297-301.

[20] H. Savoj. Improvements in technology independent
optimization of logic circuits. Proc. IWLS ’97.

[21] H. Savoj. Don't cares in multi-level network optimization.
Ph.D. Dissertation, UC Berkeley, May 1992.

[22] E. Sentovich et al. SIS: A system for sequential circuit
synthesis. Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of
EECS, UC Berkeley, 1992.

[23] S. Yang. Logic synthesis and optimization benchmarks.
Version 3.0. Tech. Report. Microelectronics Center of North
Carolina, 1991.

