
Large-Scale SOP Minimization Using
Decomposition and Functional Properties

Alan Mishchenko
Department of Electrical Engineering and

Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1770

alanmi@eecs.berkeley.edu

Tsutomu Sasao
Center for Microelectronic Systems

 and Department of CSE
Kyushu Institute of Technology

Iizuka, Fukuoka, 820-8502 JAPAN

sasao@cse.kyutech.ac.jp

ABSTRACT
In some cases, minimum Sum-Of-Products (SOP) expressions of
Boolean functions can be derived by detecting decomposition and
observing the functional properties such as unateness, instead of
applying the classical minimization algorithms. This paper
presents a systematic study of such situations and develops a
divide-and-conquer algorithm for SOP minimization, which can
dramatically reduce the computational effort, without sacrificing
the minimality of the solutions. The algorithm is used as a
preprocessor to a general-purpose exact or heuristic minimizer,
such as ESPRESSO. The experimental results show significant
improvements in runtime. The exact solutions for some large
MCNC benchmark functions are reported for the first time.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Automatic synthesis.

General Terms
Algorithms, Performance, Experimentation, Theory.

Keywords
SOP minimization, disjoint-support decomposition, BDDs,
divide-and-conquer strategy, orthodox functions.

1. INTRODUCTION
Exact and heuristic SOP minimization is one of the most well
researched problems in the field of computer-aided design. SOP
minimization is used in PLA optimization, multi-level logic
synthesis, state encoding, power estimation, test generation, and
other areas. Due to the exponential nature of the problem of exact
SOP minimization, the state-of-the-art algorithms [3][13][7][8]
can typically handle functions with up to a hundred products in
the minimum SOP. Meanwhile, most of the practical applications
and CAD tools rely on heuristic minimization [3][16][6].

The complexity of the heuristic algorithms is roughly quadratic in
the number of products. These algorithms are noticeably faster
than the exact ones but still they can be slow for functions with
many products.

Several approaches have been proposed to speed up heuristic SOP
minimization. For example, it was observed that computation of
the off-set [17] can be time-consuming even for functions with a
small number of products in the minimum SOP, such as Achilles’
heel function. It was proposed to compute the reduced off-set
[11]. Another speedup widely used in the optimization scripts for
the logic synthesis tools [22], is to perform only one loop of
heuristic minimization. The penalty for such shortcuts is the lower
minimization quality, while the runtime problem still remains. For
many benchmarks the optimization scripts do not finish because
of the long runtime of the heuristic SOP minimization.

Yet another fast heuristic SOP minimization algorithm uses the
BDD representation [14]. This algorithm works remarkably well
when the quality of the solutions is not critical, for example [10].
However, it was shown [19] that algorithm [14] can produce
irredundant SOPs with many more products than minimum SOPs.
Therefore, it is not suitable for many practical problems.

In this paper, we formulate several conditions when SOP
minimization for completely specified single-output functions can
be performed without the time-consuming general-purpose
minimization algorithms. One of such properties is the existence
of Disjoint-Support Decomposition (DSD). It has been shown in
[21] that some form of DSD is present in 75% of benchmark
functions, while 33% of them can be decomposed by DSD into
canonical networks of two-input gates. Moreover, detecting DSD
can be performed efficiently with the complexity polynomial in
the number of nodes in the BDD of the benchmark functions
using the algorithm [2] with later improvements [12].

The proposed approach to SOP minimization, called MUSASHI.
uses a divide-and-conquer strategy, which partitions the
minimization problems into a tree of simpler subproblems, and
the general-purpose SOP minimizer is used to minimize SOPs at
the nodes of this tree. Finally, the SOP is assembled from the
partial SOPs using the distributive law. The algorithm works as a
preprocessor to the general-purpose SOP minimizer.

The paper is organized as follows. Section 2 introduces the basics.
Section 3 presents the theoretical background (proofs are in [24]).
Section 4 describes the minimization algorithm. Section 5 shows
the experimental results. Section 6 concludes the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2003, June 2-6, 2003, Anaheim, California, USA.

Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

2. PRELIMINARIES
2.1 Boolean Functions
In this paper, unless stated otherwise, function refers to a
completely specified Boolean function f(X): Bn → B, B = {0,1}.
The support of function f is the set of variables X, which influence
the output value of f. The support size is denoted by |X|. Functions
f(X) and g(Y) have disjoint supports if X ∩Y = ∅.

Expressions x and x are the negative literal and the positive
literal of variable x, respectively. “Negative” and “positive” are
polarities of variable x in the corresponding literals. The AND of
literals is a product.

A product is an implicant of f if it implies f, that is, if f is equal to
1 for any assignment of variables that makes the product equal to
1. A prime implicant, or prime, of f is an implicant of f, if
removing any literal from it produces a product that does not
imply f. A minterm of f is an implicant of f containing all the
variables . The distance between two minterms is the number of
different literals in these minterms.

The OR of implicants of f is a sum-of-products (SOP) expression,
or a cover, of f. The number of products in an SOP C is denoted
by |C|. An irredundant sum-of-products expression (ISOP) of a
function f is the OR of primes of f, such that no prime can be
deleted without changing f.

A function f is positive (negative) in variable x if replacing x by
x (x by x) in any minterm of f produces a minterm of f. If f is
positive (negative) in x, any ISOP of f does not contain products
with literal x in the negative (positive) polarity. If f is positive or
negative in x, f is unate in x.

2.2 SOP Minimization
The problem of SOP minimization for f consists in finding an
ISOP with the minimum cardinality, among all the ISOPs of f.
Such an expression is called a minimum SOP (MSOP). In general,
a function has many MSOPs. The number of products in an
MSOP of f is denoted by τ(f).

A minterm of f is a distinguished minterm if there is exactly one
prime of f covering it. Such prime is an essential prime. A subset
of minterms of f is an independent set of minterms of f, if no
prime of f covers any two minterms of this subset. A function has
many independent sets. The number of elements in a maximum
independent set (MIS) of f is denoted by η(f).

Property 2.2.1. Let f be a Boolean function. Then, η(f) ≤ τ(f).

Proof. Each minterm in an MIS of f should be covered by a
different prime implicant in an MSOP of f. Q. E. D.

Function f, such that η(f) = τ(f), is orthodox [18]. The orthodox
functions include all unate, parity, and symmetric functions, as
well as all functions depending on three or fewer variables, and
all the functions with MSOPs composed of the essential primes.
Also, about 98% of benchmark functions are orthodox [18]. It can
be shown that this result is close to the observation in [9] that
graphs appearing in the practical applications are 1-perfect.

Example 1. Fig. 1 shows a non-orthodox function of four
variables. For this function, τ(f) = 5 and η(f) = 4.

Theorem 2.2.1. [18] Let f(X) and g(Y) be disjoint-support
orthodox functions. Then, τ(f ∧ g) = τ(f) ⋅τ(g).

Example 2. Let f(x1, x2, x3) = x1 ∨ x2 ∨ x3 and g(y1, y2, y3) =
y1 ∨ y2 ∨ y3. Then, f(x1, x2, x3) ∧ g(y1, y2, y3) = (x1 ∨ x2 ∨ x3)(y1 ∨
y2 ∨ y3) = x1y1 ∨ x2y1∨ x3y1∨ x2y1 ∨ x2y2∨ x2y3∨ x3y1∨ x3y2 ∨ x3y3.
For an SOP for f ∧ g obtained by the distributive law, it is true
that τ(f ∧ g) ≤ τ(f) ⋅τ(g). The above theorem claims that the SOP
is minimum. In other words, τ(f ∧ g) = τ(f) ⋅τ(g) = 9.

This theorem, repeated below as Theorem 3.2.2, is the foundation
of the results reported in this paper. Note that the theorem does
not hold if f and g are disjoint-support but not orthodox. The
result given in [18] shows that if f and g are defined as in Fig. 1,
the equality τ(f ∧ g) = τ(f) ⋅τ(g) does not hold because τ(f ∧ g) =
24 while τ(f) ⋅τ(g) = 25.

ab \ cd 00 01 11 10
00 0 1 0 1
01 0 1 1 1
11 1 1 1 1
10 1 0 0 0

Figure 1. A four-variable non-orthodox function.

2.3 Incompletely Specified Functions
The approach to SOP minimization developed in this paper is
applicable to completely specified Boolean functions. However,
the proof of one result (Theorem 3.2.5) requires the consideration
of incompletely specified functions.

The incompletely specified function is f(X): Bn → {0,1,-}. We
present such functions by their on-set and their don’t-care set. The
concept of support of incompletely specified functions is non-
trivial because some variables, on which these functions depend,
are potentially vacuous and can be removed without changing the
function. In this paper, we use the concept of disjoint-support
functions. Therefore, we define the support of an incompletely
specified function as the largest set of variables, on which the
function can depend. Two incompletely specified functions have
disjoint supports if their supports have empty intersection. This
definition is natural for the treelike decompositions of the type
provided by disjoint-support decomposition.

Other definitions for incompletely specified functions are similar
to the case of completely specified functions with the following
difference: a prime implicant has non-empty intersection with the
on-set. An MIS and the orthodox functions are defined similarly.

2.4 Disjoint Support Decomposition
Applying decomposition to a logic function results in a network
of smaller subfunctions. Disjoint support decomposition (DSD), if
it exists, produces networks, in which all subfunctions have single
outputs and disjoint supports. DSD has the finest granularity, if
the subfunctions cannot be further decomposed using DSD.

In this work, we rely on the fact that, for a completely specified
Boolean function, DSD of the finest granularity is canonical [1].
It means that there exists a unique network (up to
complementation of the subfunctions) with the property that none
of its blocks can be further decomposed using DSD.

Even though DSD has been studied since 1950’s [1], efficient
algorithms to detect it have been discovered only recently [2][12].
In this paper, we use the fast algorithm [2] with improvements
[12]. This algorithm computes the DSD network directly from
the BDD representation of the function. The runtime to compute
DSD, or to show that DSD does not exist, is negligible compared
to the runtime of SOP minimization.

3. DECOMPOSITION THEORY
This section presents the theoretical foundations of the divide-
and-conquer strategy to SOP minimization. The properties are
based on the distance between minterms, DSD, and unateness.

3.1 Separate Minimization Using Distance
Theorem 3.1.1[20]. Let f(X) and g(X) be two functions such that
the distance between every minterm of f and every minterm of g
is two or more. Then, τ(f ∨ g) = τ(f) + τ(g).

Example 3. Consider a function shown in Fig. 2 (left). The
minterms of this function can be divided into two sets:
{ bcda , dbca , dabc } and { dcab , dcba , cdba }. The distance
between the minterms in the sets is 2 or more. By Theorem 3.1.1,
the functions represented by the sets of minterms can be
minimized independently to produce an MSOP bca ∨ dbc ∨

dca ∨ dba .

ab \ cd 00 01 11 10 ab \ cd 00 01 11 10
00 0 0 0 0 00 0 1 0 0
01 0 0 1 1 01 1 1 0 0
11 0 1 0 1 11 1 1 0 1
10 0 1 1 0 10 0 1 1 1

Figure 2. Functions for Examples 3 and 4.

Theorem 3.1.2. Let f(X) be a function such that f(X) = x g1(X1) ∨
xyg2(X2), x, y ∈ X and x, y ∉ X1, X2. Then, τ(f) = τ(g1) + τ(g2).

Example 4. Consider function f shown in Fig. 2 (right). f(X) =
c g1(X1) + cag2(X2), where g1(X1) = b ∨ d and g2(X2) = b ∨ d .
By Theorem 3.1.2, τ(f) = τ(g1) + τ(g2) = 2 + 2 = 4.

3.2 Separate Minimization Using DSD
3.2.1. OR of Disjoint-Support Functions

Theorem 3.2.1. [18] Let f(X) and g(Y) be functions with disjoint
supports, each not identically 1. Then, τ(f ∨ g) = τ(f) + τ(g).

Example 5. Consider function h shown in Fig. 3 (left). h = f ∨ g,
where f(X) = a ∨ b and g(Y) = c ∨ d. In this case, τ(f) = 2, τ(g) =
2. By Theorem 3.2.1, τ(h) = τ(f ∨ g) = 2 + 2 = 4.

ab \ cd 00 01 11 10 ab \ cd 00 01 11 10
00 0 1 1 1 00 0 1 1 1
01 1 1 1 1 01 1 0 0 0
11 1 1 1 1 11 0 1 1 1
10 1 1 1 1 10 1 0 0 0

Figure 3. Functions for Examples 5 and 6.

3.2.2. AND of Disjoint-Support Functions

Theorem 3.2.2. [18] Let f(X) and g(Y) be disjoint-support
orthodox functions. Then, τ(f ∧ g) = τ(f) ⋅τ(g).

The above theorem shows that, in this case, an MSOP of f ∧ g can
be derived by applying distributive law to the MSOPs of f and g.

It can be observed that the results of Subsection 3.2.2 also hold
for incompletely specified functions, as defined in Subsection 2.3.

3.2.3. EXOR of Disjoint-Support Functions

Theorem 3.2.3. Let f(X) and g(Y) be functions with disjoint
supports. Let f and g, as well as their complements, f and g , be
orthodox. Then, τ(f ⊕ g) = τ(f) ⋅)(gτ +)(fτ ⋅τ(g).

Example 6. Consider function h shown in Fig. 3 (right). h = f ⊕
g, where f = a ⊕ b and g = c ∨ d. τ(f) = 2,)(fτ = 2, τ(g) = 2,

)(gτ = 1. Theorem 3.2.3 gives τ(h) = τ(f ⊕ g) = 2 ⋅ 1 + 2 ⋅ 2 = 6.

3.2.4. MUX of Disjoint-Support Functions

Theorem 3.2.4. Let f = (h ∧ g0) ∨ (h ∧ g1), where h(X), g0(Y),
and g1(Z) are functions with disjoint supports. Let g0 and g1 be not
equal to constant 1. Let h, ,h g0 and g1 be orthodox. Then,
τ(f) = τ(h) ⋅τ(g0) + τ(h) ⋅τ(g1).

Example 7. Consider function f in Fig. 4. f = (h ∧ g0) ∨ (h ∧ g1),
where h(c) = c, g0(a, b) = a ⊕ b, and g1(d, e) = d ∨ e. Theorem
3.2.4 gives τ(f) = τ(h) ⋅τ(g0) + τ(h) ⋅τ(g1) = 1 ⋅ 2 + 1 ⋅ 2 = 4.

ab \ cde 000 001 011 010 110 111 101 100
00 0 0 0 0 1 1 1 0
01 1 1 1 1 1 1 1 0
11 0 0 0 0 1 1 1 0
10 1 1 1 1 1 1 1 0

Figure 4. Function for Examples 7.

3.2.5. Unate Composition of Disjoint-Support Functions

In this subsection, without the loss of generality, we consider the
functions having one or more positive variables. The same
properties work for the case of negative variables, by
complementation of the variables and the corresponding
decomposition subfunctions.

Theorem 3.2.5. Let function g(x, Y), x ∉ Y, be positive in x. Let
an MSOP of g be G = xG1 ∨ G2, where G1 and G2 do not depend
on x. Let G1 and G2 be SOPs of g1 and g2, respectively. Let gx be
an incompletely specified function with the on-set g1 ∧ 2g and

the don’t-care set g2. Let both gx and g2 be orthodox. Let function
f(Z, Y) be represented as g(h(Z), Y), where h is an orthodox
function, and H is an MSOP of h. Then, τ(f) = τ(h) ⋅ τ(g1) + τ(g2).
An MSOP of f can be derived by applying the distributive law to
the expression (H ∧ G1) ∨ G2.

ab \ cd 00 01 11 10 ab \ cd 00 01 11 10
00 0 1 1 0 00 1 0 1 1
01 0 1 1 1 01 1 1 0 0
11 0 1 1 0 11 1 0 1 1
10 0 1 1 1 10 1 1 0 0

Figure 5. Functions for Examples 8 and 9.

Example 8. Consider function f in Fig. 5 (left). f = g(h(a, b), c, d),
where h(a, b) = a ⊕ b, and g(x, c, d) has an MSOP G = xc ∨ d
with g1 = c and g2 = d. Theorem 3.2.5 gives τ(f) = τ(h) ⋅ τ(g1) +
τ(g2) = 2 ⋅ 1 + 1 = 3. An MSOP of f is derived by applying the
distributing law as follows: ((a ⊕ b) ∧ c) ∨ d = cba ∨ bca ∨ d.

The following example shows that, in Theorem 3.2.5, function g
must be positive in x.

Example 9. Consider function f shown in Fig. 5 (right). Function f
can be represented as g(h(a, b), c, d), where h(a, b) = a ⊕ b and
g(x, c, d) has an MSOP G = cx ∨ dx ∨ cx . Note that g is not
positive in x. Applying the distributing law to G yields the
expression (ba ∨ ab)c ∨ (ba ∨ ab) d ∨ (ba ∨ ba) c with 6
products. However, τ(f) = 5 and an MSOP of f is

dc ∨ cba ∨ cba ∨ cba ∨ cba .

It is possible to generalize Theorem 3.2.5 for function g, which
has several positive variables.

Essentially, the simple version of Theorem 3.2.5 states that, to
obtain an MSOP of f(Z, Y) = g(h(Z), Y), we need (a) to show that
g is positive in x, (b) to minimize g and h, and (c) to show that
functions gx and g2, as defined in Theorem 3.2.4, are orthodox.
This task is typically easier than minimizing an SOP of f in the
brute-force way, because the number of products in f can be much
larger than that in g and h. Section 4 show that, for the majority of
practical functions, proving a function to be orthodox is easy.
Furthermore, [18] shows that about 98% of benchmark functions
(and their subfunctions) are orthodox.

3.3 Separate Minimization Using Unateness
Theorem 3.3.1. Let function g(x, Y), x ∉ Y, be positive in x. Let
g2(Y) = g(0, Y) ∧ g(1, Y) and g1 be the incompletely specified
function with the on-set g(1, Y) ∧ 2g (Y) and the don’t-care set
g2(Y). Let G1 and G2 be MSOPs of g1 and g2, respectively. Then,
τ(f) = τ(g1) + τ(g2) and an MSOP for g can be derived by applying
the distributing law to the expression (x ∧ G1) ∨ G2.

3.4 Separate Minimization Using DSD
A function f(Z,Y) has a disjoint-support decomposition (DSD) if f
can be written as f(Z,Y) = g(h(Z),Y). Suppose that MSOPs for h(Z)
and g(x,Y) be H and G, respectively. We can derive an SOP for
f(Z,Y) from H and G using de Morgan's law and the distributive
law. However, the SOP derived by this method is not always
minimum. For example, when g(x, Y) = x * h(Y) and x = h(Z),
where h is the function defined in Fig. 1, the SOP generated by
this method contains 25 products, but τ(f(Z,Y)) = 24.

3.5 Case Study: Benchmark Function t481
In some cases, an MSOP of a function can be derived from the
theory presented in Sections 3.1-3.3, without using the classical
minimization algorithms.

Consider the benchmark function t481, which has 16 inputs and
the DSD shown in Fig. 6 [21]. The DSD is computed from the
BDD of t481 by the algorithm [2][12] in less than 0.001 sec.
Because every logic level in the DSD structure is composed of the
same gates, we consider one gate per level. Let the gates A, B, C,
and D produce the functions fA, fB, fC, and fD, respectively.

Gate A is an AND with one complemented input. The number of
products in an MSOP of fA and its complement are equal to 1 and
2, respectively. That is, τ(fA) = 1 and)(Afτ = 2.
Function fB of gate B is an EXOR of two disjoint-support
orthodox functions of type fA. By Theorem 3.2.3, τ(fB) = τ(fA)
⋅)(Afτ +)(Afτ ⋅τ(fA) = 1 ⋅ 2 + 2 ⋅ 1 = 4. Similarly,)(Bfτ =)(Afτ
⋅)(Afτ + τ(fA) ⋅τ(fA) = 2 ⋅ 2 + 1 ⋅ 1 = 5.

Function fC of gate C is an AND of two disjoint-support orthodox
functions of type fB in different polarities. By Theorem 3.2.2, τ(fC)
= τ(fB) ⋅)(Bfτ = 4 ⋅ 5 = 20. By Theorem 3.2.1,)(Cfτ = τ(fB)
+)(Bfτ = 4 + 5 = 9.

Function fD is an EXOR of two disjoint-support orthodox
functions of type fC. By Theorem 3.2.3, τ(fD) = τ(fC) ⋅)(Cfτ +

)(Cfτ ⋅τ(fC) = 20 ⋅ 9 + 9 ⋅ 20 = 360. Similarly,)(Dfτ =)(Cfτ
⋅)(Cfτ + τ(fC) ⋅τ(fC) = 9 ⋅ 9 + 20 ⋅ 20 = 481.

Because of the inverter at the output of gate D, the number of
products in an MSOP of t481 is 481.

Figure 6. DSD Network for Benchmark Function t481.

4. MUSASHI ALGORITHM
The proposed algorithm, MUSASHI, works as a preprocessor to a
general-purpose SOP minimizer. It splits a large SOP
minimization problem into a number of simpler subproblems. The
subproblems may be trivial or may require classical minimization
methods to be applied. Finally, the minimum SOP is assembled
from the partial solutions.

)(Afτ = 1

)(Afτ = 2

)(Bfτ = 1 ⋅ 2 + 2 ⋅ 1 = 4

)(Bfτ = 2 ⋅ 2 + 1 ⋅ 1 = 5

)(Cfτ = 4 ⋅ 5 = 20

)(Cfτ = 5 + 4 = 9

)(Dfτ = 20 ⋅9 + 9⋅20 = 360

)(Dfτ = 20⋅20 + 9⋅9 = 481

A
B

C

D

4.1 Outline of MUSASHI
The high-level pseudo-code of the algorithm is shown in Fig. 7.
The input to MUSASHI is a single-output completely specified
function and the output is an MSOP of this function. The result of
minimization can be exact or heuristic, depending on the type of
minimization used for the subfunctions.

First, the canonical DSD for the function is computed. Next, the
DSD network is recursively collapsed starting from the primary
output node. This procedure is based on Theorem 3.2.5. The non-
decomposable functions are partitioned using Theorems 3.1.1 and
3.1.2. At this point, MUSASHI recursively applies the DSD
computation to the partitions (the pseudo-code does not show this
step). Next, the nodes of the network are minimized using the
general-purpose minimizer. Finally, the SOP is constructed from
the SOPs for the function at each node, using the distributive law.

MUSASHI (function)
{
 network = PerformDisjointSupportDecomposition(function);
 SelectivelyCollapseDSDNetwork(PrimaryOutput(network));
 PartitionNonDecomposableFunctionsUsingDistance(network);
 MinimizeSubfunctionsIndependently(network);
 SOP = ConstructSOPUsingDistributiveLaw(network);
 return SOP;
}

Figure 7. MUSASHI Pseudo-Code.

4.2 Detection of Orthodox Functions
To prove that a function is orthodox, it is enough to show that the
number of products in an MSOP of this function is equal to the
size of an MIS. Both problems have exponential complexity.
Therefore, in the general case, proving that a function is orthodox
is as difficult as performing the exact SOP minimization.

It has been shown by a computer program [18] that, for the
random functions, the percentage of the orthodox functions is
approaching 0 when the number of support variables increases.
However, the situation is different for the functions from the
practical applications. It was shown that 98% of the benchmark
functions are orthodox. Moreover, proving such functions to be
orthodox is easy, using the following necessary condition.

Property 4.3.2. Function f is orthodox, if the number of products
in an SOP of f, computed by a heuristic algorithm, is equal to the
size of an independent set of f, computed by a heuristic algorithm.

In our implementation, this simple method detects the orthodox
functions in approximately 95% of cases. In the remaining 5% of
cases, either (1) the function is not orthodox, or (2) the function is
orthodox but one of the heuristic algorithms (either SOP or
independent set computation) has failed to find an exact solution.
In the case of (2), it may be possible to improve the quality of the
heuristic algorithms and answer the question whether the function
is orthodox. However, the additional computational effort can
substantially increase the runtime. Because we are interested in
speeding up the computation, we ignore such cases and, instead,
perform SOP minimization using the traditional methods.

5. EXPERIMENTAL RESULTS
MUSASHI is implemented using the BDD package CUDD [23]
with extensions found in EXTRA library [15]. The program has
been tested on a 2Ghz Pentium 4 PC with 256Mb RAM.

We analyzed ESPRESSO benchmarks intending to use them in
our experiments. Although most the single-output functions in
this benchmark set have abundant DSDs, there was no significant
runtime improvement because the SOPs are small (τ(f) ≤ 50) and
ESPRESSO typically minimizes them in less than 0.1 sec.

To demonstrate the effectiveness of MUSASHI for “large-scale”
SOP minimization, we considered single-output functions of the
combinational and sequential MCNC benchmarks that have large
support sizes and non-trivial DSDs. The results are divided into
three categories and presented in Table 1 as follows: (1)
comparison with ESPRESSO-heuristic, (2) comparison with
ESPRESSO-exact, and (3) results for the functions, which both
options of ESPRESSO could not finish in 5 minutes.

Table 1. MUSASHI vs. Conventional Minimization.

Circuit Out Ins BDD Primes Offset Onset Max Part MUS Espr
(1) Comparison with ESPRESSO-heuristic

C880 17 29 81 542 3428 198 22 196 0.06 0.17
des 56 18 52 3137 3143 1025 12 528 0.20 0.23
i10 37 50 156 24308 6722 1579 45 1034 1.77 4.24
i10 119 48 175 12676 1261 3628 30 413 0.36 19.55
i10 188 31 51 1033 65544 1033 8 7 0.01 32.39

pair 4 51 74 124 68904 50 13 15 0.01 0.58
rot 16 49 275 3407 7113 786 31 249 0.28 16.13
rot 84 43 218 4215 2456 947 36 540 0.78 8.55
rot 86 34 55 904 47 544 22 56 0.02 1.84

s1423 52 51 219 50162 10523 3108 44 831 1.50 27.36
s1423 71 36 236 81925 70496 676 31 409 0.41 0.78

s15850 482 34 59 21408 21409 1664 22 27 0.02 1.25
s5378 185 24 37 1044 8352 272 9 10 0.01 0.25
Total 498 325 5.43 113.32

(2) Comparison with ESPRESSO-exact
C5315 43 22 163 1296 44 950 11 25 0.01 0.67
C5315 44 26 215 13797 74 4084 20 1021 3.50 104.53
cordic 1 23 36 1539 215 771 7 4 0.01 0.36

des 100 19 47 9479 9479 1764 12 864 0.39 1.99
i10 29 49 98 5501 2028 1311 35 829 3.00 10.45
i10 78 40 139 3847 1136 477 32 185 0.53 2.66
i10 84 41 271 11403 4334 741 37 481 7.91 31.06

i2 0 201 206 4439 384 214 6 4 0.01 7.75
rot 10 45 216 2966 2870 1260 31 265 0.73 24.69
rot 16 49 275 3407 7113 786 31 249 0.31 8.91
rot 84 43 218 4215 2456 947 36 540 1.05 21.94

s1423 55 51 124 15574 4100 875 44 344 0.20 26.92
s15850 389 48 69 3454 13087 211 22 25 0.02 1.97
s15850 592 39 61 3898 896 40 26 32 0.03 2.78

s9234 44 40 49 15360 989 34 17 17 0.02 42.00
s9234 187 45 53 3942 689 36 15 15 0.01 3.92

too_lar 2 35 200 1914 280 523 30 504 1.56 2.72
Total 816 412 19.29 295.32

(3) Functions, which ESPRESSO cannot solve in 5 minutes
C2670 135 42 55 788224 3⋅1010 1792 6 4 0.01 -
C2670 138 119 205 1⋅108 3⋅1010 1.3e08 6 4 0.01 -
C5315 68 20 21 131840 131840 768 0 0 0.01 -
C7552 69 65 106 3⋅106 7⋅1016 3008 21 836 0.31 -

i10 13 31 53 65543 3131 65542 13 7 0.01 -
i10 45 37 55 15452 1⋅106 531 13 16 0.01 -

s15850 2 140 177 1⋅1033 1⋅1010 1638 26 31 0.02 -
s15850 240 117 133 4⋅108 6⋅1011 141 20 24 0.01 -
s15850 472 52 78 481682 481682 17682 22 27 0.02 -

s9234 20 36 58 67734 63630 20498 17 40 0.01 -
Total 659 144 0.42

The following notation is used in Table 1. “Circuit” contains the
name of the multi-output benchmark functions. “Out” is the zero-
based number of the output used in our experiment. “Ins” is the
number of inputs in the true support of this output. “BDD” is the
number of BDD nodes after reordering. The following columns
characterize the SOP: “Primes” is the number of all primes;
“Offset” is the number of products in the ISOP of the offset,
computed using algorithm [14]; “Onset” is the number of products
in the SOP generated by MUSASHI. This result was verified by
running ESPRESSO. In all cases when ESPRESSO completed, it
returned the same number of products as MUSASHI.

Columns “Max” and “Part” contain the support size and the
MSOP size of the largest node in the DSD network, which had to
be minimized using our approach. Finally, “MUS” and “Espr”
show the runtime, in seconds, of our algorithm and ESPRESSO,
respectively. Table 1 shows that the efficiency of the divide-and-
conquer strategy is proportional to the reduction in the support of
the components to be minimized separately (“Max”), compared to
the support size of the original benchmark function (“Ins”).

The runtime of MUSASHI reported in column “MUS” includes
that for several procedures but the details are omitted in Table 1
due to the page limitation. On average, SOP minimization and the
MIS computation used to detect the orthodox functions take about
90% and 8% of runtime, respectively. The remaining 2% of
runtime are taken by all other procedures: DSD computation,
selective network collapsing, and deriving the resulting SOPs.

It might be possible to improve the performance of ESPRESSO in
our experiments by computing the reduced offset in the heuristic
minimization [11] and using different approaches to the exact
minimization [13][7][8]. However, this observation does not
diminish the value of the proposed divide-and-conquer strategy.
Given a more efficient SOP minimizer and larger benchmark
functions, our approach will allow for a comparable improvement
in performance, which is achieved by eliminating the need for
time-consuming SOP minimization of large functions and
minimizing smaller subfunctions instead.

6. CONCLUSIONS
In this paper, we explore a number of conditions when an exact
minimum SOP can be found by a divide-and-conquer strategy.
In particular, we rely on a class of decomposable orthodox
functions, for which SOP minimization can be derived from the
decomposition tree of the function.

The theory developed in the paper is useful for practical
applications because the majority of benchmark functions have
disjoint-support decompositions with subfunctions that satisfy the
following conditions: (1) they are simpler than the original
functions, and (2) they are orthodox and unate in some variables.
The implementation of the algorithm is efficient because (a) a fast
BDD-based algorithm to detect all disjoint-support decomposition
is available [2][12], and (b) in most cases, detection of orthodox
functions can be performed in a time polynomial in the SOP size.

The experimental results show that MUSASHI , when used as a
preprocessing step to the general-purpose SOP minimizer, can
speed up the computation by several orders of magnitude. Using
MUSASHI, some large benchmark functions are minimized
exactly for the first time.

7. ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support from Kyushu
Institute of Technology under the 75th Commemoration Fund
Program for Foreign Researchers. This research is partially
supported by the Aid for Scientific Research from the Japan
Society for the Promotion of Science (JSPS), and a grant from the
Takeda Foundation. The first author has been partially supported
by a research grant from Intel Corporation. The authors thank
Prof. Jon Butler for helpful discussions.

8. REFERENCES
[1] R. L. Ashenhurst, “The decomposition of switching functions”.

Computation Lab, Harvard University, 1959, Vol. 29, pp. 74-116.
[2] V. Bertacco and M. Damiani, "Disjunctive decomposition of logic

functions," Proc. ICCAD ‘97, pp. 78-82.
[3] R. K. Brayton, G. D. Hachtel, C. T. McMullen, A. L. Sangiovanni-

Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, Dordrecht, 1984.

[4] R. K. Brayton and C. McMullen, “The decomposition and
factorization of Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.

[5] R. E. Bryant, "Graph-based algorithms for Boolean function
manipulation," IEEE Trans. Comp., Vol. C-35, No. 8 (August,
1986), pp. 677-691.

[6] M.J. Ciesielski, S. Yang, and M.A. Perkowski, "Multiple-valued
minimization based on graph coloring," Proc. ICCD '89, pp.262-265.

[7] O. Coudert and J. C. Madre, “Towards a symbolic logic
minimization algorithm”, Proc. VLSI Design, January 1993.

[8] O. Coudert, “Two-level logic minimization: An overview”,
Integration, 17-2, pp. 97-140, Oct. 1994.

[9] O. Coudert, “Exact coloring of real-life graphs is easy”, Proc. DAC
’97, pp. 121-126.

[10] J. Jacob and A. Mishchenko, “Unate decomposition of Boolean
functions”, Proc. IWLS ’01, pp. 66-71.

[11] A. A. Malik, R. Brayton, A. R. Newton and A. Sangiovanni-
Vincentelli, “Reduced offsets for two-level multi-valued logic
minimization”, Proc. DAC’ 90, pp. 290-296.

[12] Y. Matsunaga, "An exact and efficient algorithm for disjunctive
decomposition", Proc. SASIMI '98, pp. 44-50.

[13] P. McGeer, J. Sanghavi, R. Brayton, and A. Sangiovanni-
Vincentelli, "Espresso-Signature: A new exact minimizer for logic
functions," Proc. DAC ’93, pp. 618-624.

[14] S. Minato, “Fast generation of irredundant sum-of-products forms
from binary decision diagrams. Proc. SASIMI'92, pp. 64-73.

[15] A. Mishchenko, EXTRA Library of DD procedures.
http://www.ee.pdx.edu/~alanmi/research/ extra.htm

[16] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued
minimization for PLA optimization”, IEEE Trans. CAD, Vol. 6(5),
pp. 727-750, Sep. 1987.

[17] T. Sasao, "An algorithm to derive the complement of a binary
function with multiple-valued inputs," IEEE Trans. Comp. Vol. C-
34, No. 2, pp. 131-140, Feb. 1985.

[18] T. Sasao and J. T. Butler, "On the minimization of SOPs for bi-
decomposable functions", Proc. ASP-DAC '01, pp.219-224.

[19] T. Sasao and J. T. Butler, "Worst and best irredundant sum-of-
products expressions", IEEE Trans. Comp, Vol. 50, No. 9, Sept.
2001, pp. 935-948.

[20] T. Sasao, S. J. Hong, and R. K. Brayton, “Minimization of PLA’s by
decomposition”, Unpublished technical report, 1984.

[21] T. Sasao and M. Matsuura, "DECOMPOS: An integrated system for
functional decomposition," Proc. IWLS ’98, pp. 471-477.

[22] E. Sentovich, et al, “SIS: A system for sequential circuit synthesis”,
Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, Univ. of
California, Berkeley, 1992.

[23] F. Somenzi, BDD package “CUDD v. 2.3.0.”
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[24] http://www.lsi-cad.com/dac2003/appendix.pdf.

