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ABSTRACT 
In some cases, minimum Sum-Of-Products (SOP) expressions of 
Boolean functions can be derived by detecting decomposition and 
observing the functional properties such as unateness, instead of 
applying the classical minimization algorithms. This paper 
presents a systematic study of such situations and develops a 
divide-and-conquer algorithm for SOP minimization, which can 
dramatically reduce the computational effort, without sacrificing 
the minimality of the solutions. The algorithm is used as a 
preprocessor to a general-purpose exact or heuristic minimizer, 
such as ESPRESSO. The experimental results show significant 
improvements in runtime. The exact solutions for some large 
MCNC benchmark functions are reported for the first time. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Automatic synthesis. 

General Terms 
Algorithms, Performance, Experimentation, Theory. 

Keywords 
SOP minimization, disjoint-support decomposition, BDDs, 
divide-and-conquer strategy, orthodox functions. 

1. INTRODUCTION 
Exact and heuristic SOP minimization is one of the most well 
researched problems in the field of computer-aided design. SOP 
minimization is used in PLA optimization, multi-level logic 
synthesis, state encoding, power estimation, test generation, and 
other areas. Due to the exponential nature of the problem of exact 
SOP minimization, the state-of-the-art algorithms [3][13][7][8] 
can typically handle functions with up to a hundred products in 
the minimum SOP. Meanwhile, most of the practical applications 
and CAD tools rely on heuristic minimization [3][16][6].  

 

     
     
     
     
     
     

 

The complexity of the heuristic algorithms is roughly quadratic in 
the number of products. These algorithms are noticeably faster 
than the exact ones but still they can be slow for functions with 
many products. 

Several approaches have been proposed to speed up heuristic SOP 
minimization. For example, it was observed that computation of 
the off-set [17] can be time-consuming even for functions with a 
small number of products in the minimum SOP, such as Achilles’ 
heel function. It was proposed to compute the reduced off-set 
[11]. Another speedup widely used in the optimization scripts for 
the logic synthesis tools [22], is to perform only one loop of 
heuristic minimization. The penalty for such shortcuts is the lower 
minimization quality, while the runtime problem still remains. For 
many benchmarks the optimization scripts do not finish because 
of the long runtime of the heuristic SOP minimization. 

Yet another fast heuristic SOP minimization algorithm uses the 
BDD representation [14]. This algorithm works remarkably well 
when the quality of the solutions is not critical, for example [10]. 
However, it was shown [19] that algorithm [14] can produce 
irredundant SOPs with many more products than minimum SOPs. 
Therefore, it is not suitable for many practical problems.  

In this paper, we formulate several conditions when SOP 
minimization for completely specified single-output functions can 
be performed without the time-consuming general-purpose 
minimization algorithms. One of such properties is the existence 
of Disjoint-Support Decomposition (DSD). It has been shown in 
[21] that some form of DSD is present in 75% of benchmark 
functions, while 33% of them can be decomposed by DSD into 
canonical networks of two-input gates. Moreover, detecting DSD 
can be performed efficiently with the complexity polynomial in 
the number of nodes in the BDD of the benchmark functions 
using the algorithm [2] with later improvements [12]. 

The proposed approach to SOP minimization, called MUSASHI. 
uses a divide-and-conquer strategy, which partitions the 
minimization problems into a tree of simpler subproblems, and 
the general-purpose SOP minimizer is used to minimize SOPs at 
the nodes of this tree. Finally, the SOP is assembled from the 
partial SOPs using the distributive law. The algorithm works as a 
preprocessor to the general-purpose SOP minimizer.  

The paper is organized as follows. Section 2 introduces the basics. 
Section 3 presents the theoretical background (proofs are in [24]). 
Section 4 describes the minimization algorithm. Section 5 shows 
the experimental results. Section 6 concludes the paper.  
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2. PRELIMINARIES 
2.1 Boolean Functions 
In this paper, unless stated otherwise, function refers to a 
completely specified Boolean function f(X): Bn → B, B = {0,1}. 
The support of function f is the set of variables X, which influence 
the output value of f. The support size is denoted by |X|. Functions 
f(X) and g(Y) have disjoint supports if X ∩Y = ∅. 

Expressions x  and x are the negative literal and the positive 
literal of variable x, respectively. “Negative” and “positive” are 
polarities of variable x in the corresponding literals. The AND of 
literals is a product.  

A product is an implicant of f if it implies f, that is, if f is equal to 
1 for any assignment of variables that makes the product equal to 
1. A prime implicant, or prime, of f is an implicant of f, if 
removing any literal from it produces a product that does not 
imply f. A minterm of f is an implicant of f containing all the 
variables . The distance between two minterms is the number of 
different literals in these minterms. 

The OR of implicants of f is a sum-of-products (SOP) expression, 
or a cover, of f. The number of products in an SOP C is denoted 
by |C|. An irredundant sum-of-products expression (ISOP) of a 
function f is the OR of primes of f, such that no prime can be 
deleted without changing f.  

A function f is positive (negative) in variable x if replacing x  by 
x (x by x ) in any minterm of f produces a minterm of f. If f is 
positive (negative) in x, any ISOP of f does not contain products 
with literal x in the negative (positive) polarity. If f is positive or 
negative in x, f is unate in x. 

2.2 SOP Minimization 
The problem of SOP minimization for f consists in finding an 
ISOP with the minimum cardinality, among all the ISOPs of f. 
Such an expression is called a minimum SOP (MSOP). In general, 
a function has many MSOPs. The number of products in an 
MSOP of f is denoted by τ(f). 

A minterm of f is a distinguished minterm if there is exactly one 
prime of f covering it. Such prime is an essential prime. A subset 
of minterms of f is an independent set of minterms of f, if no 
prime of f covers any two minterms of this subset. A function has 
many independent sets. The number of elements in a maximum 
independent set (MIS) of f is denoted by η(f). 

Property 2.2.1. Let f be a Boolean function. Then, η(f) ≤ τ(f). 

Proof. Each minterm in an MIS of f should be covered by a 
different prime implicant in an MSOP of f. Q. E. D.  

Function f, such that η(f) = τ(f), is orthodox [18]. The orthodox 
functions include all unate, parity, and symmetric functions, as 
well as all functions depending on three or fewer variables, and 
all the functions with MSOPs composed of the essential primes. 
Also, about 98% of benchmark functions are orthodox [18]. It can 
be shown that this result is close to the observation in [9] that 
graphs appearing in the practical applications are 1-perfect. 

Example 1. Fig. 1 shows a non-orthodox function of four 
variables. For this function, τ(f) = 5 and η(f) = 4. 

Theorem 2.2.1. [18] Let f(X) and g(Y) be disjoint-support 
orthodox functions. Then, τ(f ∧ g) = τ(f) ⋅τ(g). 

Example 2.  Let f(x1, x2, x3) = x1 ∨ x2 ∨ x3 and g(y1, y2, y3) = 
y1 ∨ y2 ∨ y3. Then,  f(x1, x2, x3) ∧ g(y1, y2, y3) = (x1 ∨ x2 ∨ x3)(y1 ∨ 
y2 ∨ y3) = x1y1 ∨ x2y1∨ x3y1∨ x2y1 ∨ x2y2∨ x2y3∨ x3y1∨ x3y2 ∨ x3y3. 
For an SOP for f ∧ g obtained by the distributive law, it is true 
that τ(f ∧ g) ≤ τ(f) ⋅τ(g).  The above theorem claims that the SOP 
is minimum. In other words, τ(f ∧ g) = τ(f) ⋅τ(g) = 9. 

This theorem, repeated below as Theorem 3.2.2, is the foundation 
of the results reported in this paper. Note that the theorem does 
not hold if f and g are disjoint-support but not orthodox. The  
result given in [18] shows that if f and g are defined as in Fig. 1, 
the equality τ(f ∧ g) = τ(f) ⋅τ(g) does not hold because τ(f ∧ g) = 
24 while τ(f) ⋅τ(g) = 25.  

ab \ cd 00 01 11 10 
00 0 1 0 1 
01 0 1 1 1 
11 1 1 1 1 
10 1 0 0 0 

Figure 1. A four-variable non-orthodox function. 

2.3 Incompletely Specified Functions 
The approach to SOP minimization developed in this paper is 
applicable to completely specified Boolean functions. However, 
the proof of one result (Theorem 3.2.5) requires the consideration 
of incompletely specified functions.  

The incompletely specified function is f(X): Bn → {0,1,-}. We 
present such functions by their on-set and their don’t-care set. The 
concept of support of incompletely specified functions is non-
trivial because some variables, on which these functions depend, 
are potentially vacuous and can be removed without changing the 
function. In this paper, we use the concept of disjoint-support 
functions. Therefore, we define the support of an incompletely 
specified function as the largest set of variables, on which the 
function can depend. Two incompletely specified functions have 
disjoint supports if their supports have empty intersection. This 
definition is natural for the treelike decompositions of the type 
provided by disjoint-support decomposition. 

Other definitions for incompletely specified functions are similar 
to the case of completely specified functions with the following 
difference: a prime implicant has non-empty intersection with the 
on-set. An MIS and the orthodox functions are defined similarly. 

2.4 Disjoint Support Decomposition 
Applying decomposition to a logic function results in a network 
of smaller subfunctions. Disjoint support decomposition (DSD), if 
it exists, produces networks, in which all subfunctions have single 
outputs and disjoint supports. DSD has the finest granularity, if 
the subfunctions cannot be further decomposed using DSD.  

In this work, we rely on the fact that, for a completely specified 
Boolean function, DSD of the finest granularity is canonical [1]. 
It means that there exists a unique network (up to 
complementation of the subfunctions) with the property that none 
of its blocks can be further decomposed using DSD. 



Even though DSD has been studied since 1950’s [1], efficient 
algorithms to detect it have been discovered only recently [2][12]. 
In this paper, we use the fast algorithm [2] with improvements 
[12].  This algorithm computes the DSD network directly from 
the BDD representation of the function. The runtime to compute 
DSD, or to show that DSD does not exist, is negligible compared 
to the runtime of SOP minimization. 

3. DECOMPOSITION THEORY 
This section presents the theoretical foundations of the divide-
and-conquer strategy to SOP minimization. The properties are 
based on the distance between minterms, DSD, and unateness.  

3.1 Separate Minimization Using Distance 
Theorem 3.1.1[20]. Let f(X) and g(X) be two functions such that 
the distance between every minterm of f and every minterm of g 
is two or more. Then, τ(f ∨ g) = τ(f) + τ(g). 

Example 3. Consider a function shown in Fig. 2 (left). The 
minterms of this function can be divided into two sets: 
{ bcda , dbca , dabc } and { dcab , dcba , cdba }. The distance 
between the minterms in the sets is 2 or more. By Theorem 3.1.1, 
the functions represented by the sets of minterms can be 
minimized independently to produce an MSOP bca ∨ dbc ∨ 

dca ∨ dba . 

ab \ cd 00 01 11 10  ab \ cd 00 01 11 10 
00 0 0 0 0  00 0 1 0 0 
01 0 0 1 1  01 1 1 0 0 
11 0 1 0 1  11 1 1 0 1 
10 0 1 1 0  10 0 1 1 1 

Figure 2. Functions for Examples 3 and 4. 

Theorem 3.1.2. Let f(X) be a function such that f(X) = x g1(X1) ∨ 
xyg2(X2),  x, y ∈ X  and  x, y ∉ X1, X2. Then, τ(f) = τ(g1) + τ(g2). 

Example 4. Consider function f shown in Fig. 2 (right). f(X) = 
c g1(X1) + cag2(X2),  where g1(X1) = b ∨ d and g2(X2) = b ∨ d . 
By Theorem 3.1.2, τ(f) = τ(g1) + τ(g2) = 2 + 2 = 4. 

3.2 Separate Minimization Using DSD 
3.2.1. OR of Disjoint-Support Functions 

Theorem 3.2.1. [18] Let f(X) and g(Y) be functions with disjoint 
supports, each not identically 1. Then, τ(f ∨ g) = τ(f) + τ(g). 

Example 5. Consider function h shown in Fig. 3 (left). h = f ∨ g, 
where f(X) = a ∨ b and g(Y) = c ∨ d. In this case, τ(f) = 2, τ(g) = 
2. By Theorem 3.2.1, τ(h) = τ(f ∨ g) = 2 + 2 = 4.  

ab \ cd 00 01 11 10  ab \ cd 00 01 11 10 
00 0 1 1 1  00 0 1 1 1 
01 1 1 1 1  01 1 0 0 0 
11 1 1 1 1  11 0 1 1 1 
10 1 1 1 1  10 1 0 0 0 

Figure 3. Functions for Examples 5 and 6. 

3.2.2. AND of Disjoint-Support Functions 

Theorem 3.2.2. [18] Let f(X) and g(Y) be disjoint-support 
orthodox functions. Then, τ(f ∧ g) = τ(f) ⋅τ(g). 

The above theorem shows that, in this case, an MSOP of f ∧ g can 
be derived by applying distributive law to the MSOPs of f and g. 

It can be observed that the results of Subsection 3.2.2 also hold 
for incompletely specified functions, as defined in Subsection 2.3. 

3.2.3. EXOR of Disjoint-Support Functions 

Theorem 3.2.3. Let f(X) and g(Y) be functions with disjoint 
supports. Let f and g, as well as their complements, f and g , be 
orthodox. Then, τ(f ⊕ g) = τ(f) ⋅ )(gτ + )( fτ ⋅τ(g). 

Example 6. Consider function h shown in Fig. 3 (right). h = f ⊕ 
g, where f = a ⊕ b and g = c ∨ d. τ(f) = 2, )( fτ = 2, τ(g) = 2, 

)(gτ  = 1. Theorem 3.2.3 gives τ(h) = τ(f ⊕ g) = 2 ⋅ 1 + 2 ⋅ 2 = 6.  

3.2.4. MUX of Disjoint-Support Functions 

Theorem 3.2.4. Let f = ( h ∧ g0) ∨ (h ∧ g1), where h(X), g0(Y), 
and g1(Z) are functions with disjoint supports. Let g0 and g1 be not 
equal to constant 1. Let h, ,h  g0 and g1 be orthodox. Then, 
τ(f) = τ( h ) ⋅τ(g0) + τ(h) ⋅τ(g1). 

Example 7. Consider function f in Fig. 4. f = ( h ∧ g0) ∨ (h ∧ g1), 
where h(c) = c, g0(a, b) = a ⊕ b, and g1(d, e) = d ∨ e. Theorem 
3.2.4 gives τ(f) = τ( h ) ⋅τ(g0) + τ(h) ⋅τ(g1) = 1 ⋅ 2 + 1 ⋅ 2 = 4. 

ab \ cde 000 001 011 010 110 111 101 100
00 0 0 0 0 1 1 1 0 
01 1 1 1 1 1 1 1 0 
11 0 0 0 0 1 1 1 0 
10 1 1 1 1 1 1 1 0 

Figure 4. Function for Examples 7. 

3.2.5. Unate Composition of Disjoint-Support Functions 

In this subsection, without the loss of generality, we consider the 
functions having one or more positive variables. The same 
properties work for the case of negative variables, by 
complementation of the variables and the corresponding 
decomposition subfunctions. 

Theorem 3.2.5. Let function g(x, Y), x ∉ Y, be positive in x. Let 
an MSOP of g be G = xG1 ∨ G2, where G1 and G2 do not depend 
on x. Let G1 and G2 be SOPs of g1 and g2, respectively. Let gx be 
an incompletely specified function with the on-set g1 ∧ 2g  and 

the don’t-care set g2. Let both gx and g2 be orthodox. Let function 
f(Z, Y) be represented as g(h(Z), Y), where h is an orthodox 
function, and H is an MSOP of h. Then, τ(f) = τ(h) ⋅ τ(g1) + τ(g2). 
An MSOP of f can be derived by applying the distributive law to 
the expression (H ∧ G1) ∨ G2. 

 



ab \ cd 00 01 11 10  ab \ cd 00 01 11 10 
00 0 1 1 0  00 1 0 1 1 
01 0 1 1 1  01 1 1 0 0 
11 0 1 1 0  11 1 0 1 1 
10 0 1 1 1  10 1 1 0 0 

Figure 5. Functions for Examples 8 and 9. 

Example 8. Consider function f in Fig. 5 (left). f = g(h(a, b), c, d), 
where h(a, b) = a ⊕ b, and g(x, c, d) has an MSOP G = xc ∨ d 
with g1 = c and g2 = d. Theorem 3.2.5 gives τ(f) = τ(h) ⋅ τ(g1) + 
τ(g2) = 2 ⋅ 1 + 1 = 3. An MSOP of f is derived by applying the 
distributing law as follows: ((a ⊕ b) ∧ c) ∨ d = cba ∨ bca ∨ d. 

The following example shows that, in Theorem 3.2.5, function g 
must be positive in x. 

Example 9. Consider function f shown in Fig. 5 (right). Function f 
can be represented as g(h(a, b), c, d), where h(a, b) = a ⊕ b and 
g(x, c, d) has an MSOP G = cx ∨ dx ∨ cx . Note that g is not 
positive in x. Applying the distributing law to G yields the 
expression ( ba ∨ ab )c ∨ ( ba ∨ ab ) d  ∨ ( ba ∨ ba ) c  with 6 
products. However, τ(f)  = 5 and an MSOP of f is 

dc ∨ cba ∨ cba ∨ cba ∨ cba .  

It is possible to generalize Theorem 3.2.5 for function g, which 
has several positive variables. 

Essentially, the simple version of Theorem 3.2.5 states that, to 
obtain an MSOP of f(Z, Y) = g(h(Z), Y), we need (a) to show that 
g is positive in x, (b) to minimize g and h, and (c) to show that 
functions gx and g2, as defined in Theorem 3.2.4, are orthodox. 
This task is typically easier than minimizing an SOP of f in the 
brute-force way, because the number of products in f can be much 
larger than that in g and h. Section 4 show that, for the majority of 
practical functions, proving a function to be orthodox is easy. 
Furthermore, [18] shows that about 98% of benchmark functions 
(and their subfunctions) are orthodox. 

3.3 Separate Minimization Using Unateness 
Theorem 3.3.1. Let function g(x, Y), x ∉ Y, be positive in x. Let 
g2(Y) = g(0, Y) ∧ g(1, Y) and g1 be the incompletely specified 
function with the on-set g(1, Y) ∧ 2g (Y) and the don’t-care set 
g2(Y). Let G1 and G2 be MSOPs of g1 and g2, respectively. Then, 
τ(f) = τ(g1) + τ(g2) and an MSOP for g can be derived by applying 
the distributing law to the expression (x ∧ G1) ∨ G2. 

3.4 Separate Minimization Using DSD 
A function f(Z,Y) has a disjoint-support decomposition (DSD) if f 
can be written as f(Z,Y) = g(h(Z),Y). Suppose that MSOPs for h(Z) 
and g(x,Y) be H and G, respectively. We can derive an SOP for 
f(Z,Y) from H and G using de Morgan's law and the distributive 
law. However, the SOP derived by this method is not always 
minimum. For example, when g(x, Y) = x * h(Y) and x = h(Z), 
where h is the function defined in Fig. 1, the SOP generated by 
this method contains 25 products, but τ(f(Z,Y)) = 24. 

 

3.5 Case Study: Benchmark Function t481 
In some cases, an MSOP of a function can be derived from the 
theory presented in Sections 3.1-3.3, without using the classical 
minimization algorithms. 

Consider the benchmark function t481, which has 16 inputs and 
the DSD shown in Fig. 6 [21]. The DSD is computed from the 
BDD of t481 by the algorithm [2][12] in less than 0.001 sec. 
Because every logic level in the DSD structure is composed of the 
same gates, we consider one gate per level. Let the gates A, B, C, 
and D produce the functions fA, fB, fC, and fD, respectively. 

Gate A is an AND with one complemented input. The number of 
products in an MSOP of fA and its complement are equal to 1 and 
2, respectively. That is, τ(fA) = 1 and )( Afτ = 2.  
Function fB of gate B is an EXOR of two disjoint-support 
orthodox functions of type fA. By Theorem 3.2.3, τ(fB) = τ(fA) 
⋅ )( Afτ + )( Afτ ⋅τ(fA) = 1 ⋅ 2 + 2 ⋅ 1 = 4. Similarly, )( Bfτ = )( Afτ  
⋅ )( Afτ + τ(fA) ⋅τ(fA) = 2 ⋅ 2 + 1 ⋅ 1 = 5. 

Function fC of gate C is an AND of two disjoint-support orthodox 
functions of type fB in different polarities. By Theorem 3.2.2, τ(fC) 
= τ(fB) ⋅ )( Bfτ = 4 ⋅ 5 = 20. By Theorem 3.2.1, )( Cfτ = τ(fB) 
+ )( Bfτ = 4 + 5 = 9. 

Function fD is an EXOR of two disjoint-support orthodox 
functions of type fC. By Theorem 3.2.3, τ(fD) = τ(fC) ⋅ )( Cfτ + 

)( Cfτ ⋅τ(fC) = 20 ⋅ 9 + 9 ⋅ 20 = 360. Similarly, )( Dfτ = )( Cfτ  
⋅ )( Cfτ + τ(fC) ⋅τ(fC) = 9 ⋅ 9 + 20 ⋅ 20 = 481. 

Because of the inverter at the output of gate D, the number of 
products in an MSOP of t481 is 481. 

 

Figure 6. DSD Network for Benchmark Function t481. 

4. MUSASHI ALGORITHM 
The proposed algorithm, MUSASHI, works as a preprocessor to a 
general-purpose SOP minimizer. It splits a large SOP 
minimization problem into a number of simpler subproblems. The 
subproblems may be trivial or may require classical minimization 
methods to be applied. Finally, the minimum SOP is assembled 
from the partial solutions.  

)( Afτ = 1 

)( Afτ = 2 

)( Bfτ = 1 ⋅ 2 + 2 ⋅ 1 = 4 

)( Bfτ = 2 ⋅ 2 + 1 ⋅ 1 = 5 

)( Cfτ = 4 ⋅ 5 = 20 

)( Cfτ = 5 + 4 = 9 

)( Dfτ = 20 ⋅9 + 9⋅20 = 360 

)( Dfτ = 20⋅20 + 9⋅9 = 481 

A 
B 

C 

D 



4.1 Outline of MUSASHI 
The high-level pseudo-code of the algorithm is shown in Fig. 7. 
The input to MUSASHI is a single-output completely specified 
function and the output is an MSOP of this function. The result of 
minimization can be exact or heuristic, depending on the type of 
minimization used for the subfunctions. 

First, the canonical DSD for the function is computed. Next, the 
DSD network is recursively collapsed starting from the primary 
output node. This procedure is based on Theorem 3.2.5. The non-
decomposable functions are partitioned using Theorems 3.1.1 and 
3.1.2. At this point, MUSASHI recursively applies the DSD 
computation to the partitions (the pseudo-code does not show this 
step). Next, the nodes of the network are minimized using the 
general-purpose minimizer. Finally, the SOP is constructed from 
the SOPs for the function at each node, using the distributive law. 

MUSASHI ( function ) 
{ 
    network = PerformDisjointSupportDecomposition( function ); 
    SelectivelyCollapseDSDNetwork( PrimaryOutput( network ) ); 
    PartitionNonDecomposableFunctionsUsingDistance( network ); 
    MinimizeSubfunctionsIndependently( network ); 
    SOP = ConstructSOPUsingDistributiveLaw( network ); 
    return SOP; 
} 

Figure 7. MUSASHI Pseudo-Code. 

4.2 Detection of Orthodox Functions 
To prove that a function is orthodox, it is enough to show that the 
number of products in an MSOP of this function is equal to the 
size of an MIS. Both problems have exponential complexity. 
Therefore, in the general case, proving that a function is orthodox 
is as difficult as performing the exact SOP minimization.  

It has been shown by a computer program [18] that, for the 
random functions, the percentage of the orthodox functions is 
approaching 0 when the number of support variables increases. 
However, the situation is different for the functions from the 
practical applications. It was shown that 98% of the benchmark 
functions are orthodox. Moreover, proving such functions to be 
orthodox is easy, using the following necessary condition. 

Property 4.3.2. Function f is orthodox, if the number of products 
in an SOP of f, computed by a heuristic algorithm, is equal to the 
size of an independent set of f, computed by a heuristic algorithm. 

In our implementation, this simple method detects the orthodox 
functions in approximately 95% of cases. In the remaining 5% of 
cases, either (1) the function is not orthodox, or (2) the function is 
orthodox but one of the heuristic algorithms (either SOP or 
independent set computation) has failed to find an exact solution. 
In the case of (2), it may be possible to improve the quality of the 
heuristic algorithms and answer the question whether the function 
is orthodox. However, the additional computational effort can 
substantially increase the runtime. Because we are interested in 
speeding up the computation, we ignore such cases and, instead, 
perform SOP minimization using the traditional methods.  

5. EXPERIMENTAL RESULTS  
MUSASHI is implemented using the BDD package CUDD [23] 
with extensions found in EXTRA library [15]. The program has 
been tested on a 2Ghz Pentium 4 PC with 256Mb RAM.  

We analyzed ESPRESSO benchmarks intending to use them in 
our experiments. Although most the single-output functions in 
this benchmark set have abundant DSDs, there was no significant 
runtime improvement because the SOPs are small (τ(f) ≤ 50) and 
ESPRESSO typically minimizes them in less than 0.1 sec.   

To demonstrate the effectiveness of MUSASHI for “large-scale” 
SOP minimization, we considered single-output functions of the 
combinational and sequential MCNC benchmarks that have large 
support sizes and non-trivial DSDs. The results are divided into 
three categories and presented in Table 1 as follows: (1) 
comparison with ESPRESSO-heuristic, (2) comparison with 
ESPRESSO-exact, and (3) results for the functions, which both 
options of ESPRESSO could not finish in 5 minutes.  

Table 1. MUSASHI vs. Conventional Minimization. 

Circuit Out Ins BDD Primes Offset Onset Max Part MUS Espr 
(1) Comparison with ESPRESSO-heuristic 

C880 17 29 81 542 3428 198 22 196 0.06 0.17
des 56 18 52 3137 3143 1025 12 528 0.20 0.23
i10 37 50 156 24308 6722 1579 45 1034 1.77 4.24
i10 119 48 175 12676 1261 3628 30 413 0.36 19.55
i10 188 31 51 1033 65544 1033 8 7 0.01 32.39

pair 4 51 74 124 68904 50 13 15 0.01 0.58
rot 16 49 275 3407 7113 786 31 249 0.28 16.13
rot 84 43 218 4215 2456 947 36 540 0.78 8.55
rot 86 34 55 904 47 544 22 56 0.02 1.84

s1423 52 51 219 50162 10523 3108 44 831 1.50 27.36
s1423 71 36 236 81925 70496 676 31 409 0.41 0.78

s15850 482 34 59 21408 21409 1664 22 27 0.02 1.25
s5378 185 24 37 1044 8352 272 9 10 0.01 0.25
Total 498   325 5.43 113.32

(2) Comparison with ESPRESSO-exact 
C5315 43 22 163 1296 44 950 11 25 0.01 0.67
C5315 44 26 215 13797 74 4084 20 1021 3.50 104.53
cordic 1 23 36 1539 215 771 7 4 0.01 0.36

des 100 19 47 9479 9479 1764 12 864 0.39 1.99
i10 29 49 98 5501 2028 1311 35 829 3.00 10.45
i10 78 40 139 3847 1136 477 32 185 0.53 2.66
i10 84 41 271 11403 4334 741 37 481 7.91 31.06

i2 0 201 206 4439 384 214 6 4 0.01 7.75
rot 10 45 216 2966 2870 1260 31 265 0.73 24.69
rot 16 49 275 3407 7113 786 31 249 0.31 8.91
rot 84 43 218 4215 2456 947 36 540 1.05 21.94

s1423 55 51 124 15574 4100 875 44 344 0.20 26.92
s15850 389 48 69 3454 13087 211 22 25 0.02 1.97
s15850 592 39 61 3898 896 40 26 32 0.03 2.78

s9234 44 40 49 15360 989 34 17 17 0.02 42.00
s9234 187 45 53 3942 689 36 15 15 0.01 3.92

too_lar 2 35 200 1914 280 523 30 504 1.56 2.72
Total 816   412 19.29 295.32

(3) Functions, which ESPRESSO cannot solve in 5 minutes 
C2670 135 42 55 788224 3⋅1010 1792 6 4 0.01 -
C2670 138 119 205 1⋅108 3⋅1010 1.3e08 6 4 0.01 -
C5315 68 20 21 131840 131840 768 0 0 0.01 -
C7552 69 65 106 3⋅106 7⋅1016 3008 21 836 0.31 -

i10 13 31 53 65543 3131 65542 13 7 0.01 -
i10 45 37 55 15452 1⋅106 531 13 16 0.01 -

s15850 2 140 177 1⋅1033 1⋅1010 1638 26 31 0.02 -
s15850 240 117 133 4⋅108 6⋅1011 141 20 24 0.01 -
s15850 472 52 78 481682 481682 17682 22 27 0.02 -

s9234 20 36 58 67734 63630 20498 17 40 0.01 -
Total 659   144 0.42



The following notation is used in Table 1. “Circuit” contains the 
name of the multi-output benchmark functions. “Out” is the zero-
based number of the output used in our experiment. “Ins” is the 
number of inputs in the true support of this output. “BDD” is the 
number of BDD nodes after reordering. The following columns 
characterize the SOP: “Primes” is the number of all primes; 
“Offset” is the number of products in the ISOP of the offset, 
computed using algorithm [14]; “Onset” is the number of products 
in the SOP generated by MUSASHI. This result was verified by 
running ESPRESSO. In all cases when ESPRESSO completed, it 
returned the same number of products as MUSASHI.  

Columns “Max” and “Part” contain the support size and the 
MSOP size of the largest node in the DSD network, which had to 
be minimized using our approach. Finally, “MUS” and “Espr” 
show the runtime, in seconds, of our algorithm and ESPRESSO, 
respectively. Table 1 shows that the efficiency of the divide-and-
conquer strategy is proportional to the reduction in the support of 
the components to be minimized separately (“Max”), compared to 
the support size of the original benchmark function (“Ins”).  

The runtime of MUSASHI reported in column “MUS” includes 
that for several procedures but the details are omitted in Table 1 
due to the page limitation. On average, SOP minimization and the 
MIS computation used to detect the orthodox functions take about 
90% and 8% of runtime, respectively. The remaining 2% of 
runtime are taken by all other procedures: DSD computation, 
selective network collapsing, and deriving the resulting SOPs. 

It might be possible to improve the performance of ESPRESSO in 
our experiments by computing the reduced offset in the heuristic 
minimization [11] and using different approaches to the exact 
minimization [13][7][8]. However, this observation does not 
diminish the value of the proposed divide-and-conquer strategy. 
Given a more efficient SOP minimizer and larger benchmark 
functions, our approach will allow for a comparable improvement 
in performance, which is achieved by eliminating the need for 
time-consuming SOP minimization of large functions and 
minimizing smaller subfunctions instead.  

6. CONCLUSIONS 
In this paper, we explore a number of conditions when an exact 
minimum SOP can be found by a divide-and-conquer strategy. 
In particular, we rely on a class of decomposable orthodox 
functions, for which SOP minimization can be derived from the 
decomposition tree of the function. 

The theory developed in the paper is useful for practical 
applications because the majority of benchmark functions have 
disjoint-support decompositions with subfunctions that satisfy the 
following conditions: (1) they are simpler than the original 
functions, and (2) they are orthodox and unate in some variables. 
The implementation of the algorithm is efficient because (a) a fast 
BDD-based algorithm to detect all disjoint-support decomposition 
is available [2][12], and (b) in most cases, detection of orthodox 
functions can be performed in a time polynomial in the SOP size. 

The experimental results show that MUSASHI , when used as a 
preprocessing step to the general-purpose SOP minimizer, can 
speed up the computation by several orders of magnitude. Using 
MUSASHI, some large benchmark functions are minimized 
exactly for the first time. 
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