
A Power Optimization Toolbox for Logic Synthesis and Mapping

 Stephen Jang Kevin Chung Alan Mishchenko Robert Brayton
 Xilinx Inc. Department of EECS, University of California, Berkeley
 {sjang, kevinc}@xilinx.com {alanmi, brayton}@eecs.berkeley.edu

Abstract
The paper describes several complementary algorithms for
power-aware logic optimization:

o SimSwitch is an efficient sequential simulator for estimating
switching activity of signals in large sequential designs.

o PowerMap uses switching activity to make better decisions
during power-aware technology mapping.

o PowerDC is a resynthesis algorithm that eliminates wires
with high switching activity.

The proposed simulator draws on new ideas in logic
representation and is geared for speed, e.g. it can simulate a 1M-
node sequential design using 1000 bit patterns for 100 cycles in
about 10 seconds on a typical one-core CPU. Experiments show
that, although each technique contributes to the final quality, it is
their combination that gives the best results. When applied to
large industrial designs in a highly-optimized industrial flow,
previous work on sequential synthesis and wire-aware technology
mapping led to a 27.6% reduction in switching activity, while the
techniques of this paper reduce it additionally by 19.6% without a
substantial increase in runtime or degradation of other metrics.

1 Introduction
With the increase of the design size and the reduction of feature

size, power minimization becomes an important issue. According
to current estimates, about 67% of power dissipation in FPGA
devices is due to dynamic power [3]. This high power
consumption is an increasing concern for FPGA vendors and their
customers. Reducing power is key to lowering packaging and
cooling costs, and improving device reliability [13].

Total power in an FPGA (or any semiconductor device) consists
of static power and dynamic power. Static power results
primarily from transistor leakage current, which is the small
current that travels either from source-to-drain or through the gate
oxide when the transistor is logically “off” [33]. Dynamic power
dissipation is caused by signal transitions in a circuit and comes
from the clock and logic networks. These transitions can be part
of normal operation or can be due to glitching. The dynamic
power is characterized by the equation:

∑
∈

⋅= ⋅
signalsi

dynamic ii sCVfP 2

2

1

where f is the clock frequency, V the supply voltage, iC the
capacitance switched by signal i, and is is the probability of
signal i making a transition. An overview of leakage reduction
techniques used in ASICs and microprocessor is described in [30].
However, the focus of this paper is on reducing the dynamic
power consumption due to signal switching in the logic network.

Most power-aware technology mapping [3] and power-aware
placement and routing [15] use switching activity information of
the netlist to estimate dynamic power dissipation.

Techniques for estimating switching activity can be simulation-
based or probability-based (or vectorless). This work uses
simulation, which is more accurate but slower [16]. Sequential
simulation is applied to a Boolean network consisting of logic
gates and flip-flops while keeping track of the transitions. Gate-
level simulation is a well-studied problem and much effort has
been placed on improving its speed [17][30]. Despite many
innovations, gate-level simulation has remained slow for large
designs.

Logic synthesis and technology mapping transform logic
implemenation by choosing among different circuit structures.
Given the goal of reducing dynamic power dissipation, it is
natural to seek logic structures resulting in a reduction of the total
switching activity of their constituent nodes. Thus, it is important
to develop a fast and accurate switching activity estimator that
can drive power-aware technology mapping and resynthesis.

The present paper contributes to these goals in several ways:
• It describes an implementation of an efficient sequential

simulator, SimSwitch, for estimating switching activity of
all signals in a sequential design. This estimation is used to
guide power-aware logic synthesis by evaluating different
restructuring and mapping choices.

• It describes two synergistic algorithms, PowerMap and
PowerDC, performing power-aware technology mapping
and restructuring of the circuit while trying to minimize
the total switching activity.

• It offers an experimental evaluation of these methods and
demonstrates that a substantial reduction in the dynamic
power is possible without increasing runtime and
compromising other parameters such as area and delay.

The contributions of this paper can be extended to work for
standard-cell designs. In particular, the same sequential simulator
can be used to estimate switching activity of all signals. A cut-
based standard-cell mapper [5] can be modified to take switching
activity into account, leading to mappings with reduced power
consumption. Finally, a don’t-care-based optimization
environment for standard-cells can be developed based on the
same methodology as [27]. This optimization will rewire a
standard-cell design while replacing nets with high switching
activity by nets with low switching activity. Although
development of such an environment is beyond the scope of this
work, our experience with other optimizations applicable to both
standard-cell and LUT-based designs suggests that power-
reductions for standard-cells are likely to be comparable to those
for the LUT-based designs presented in this paper.

The rest of the paper is organized as follows. Section 2 provides
necessary background on logic synthesis and technology
mapping. Section 3 describes the sequential simulator for power
estimation. Section 4 presents the power-aware logic optimization
algorithms. Section 5 shows experimental results. Finally, Section
6 concludes the paper and outlines future work.

2 Background

2.1 Boolean Networks
A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges
corresponding to wires connecting the gates. The terms Boolean
network and circuit are used interchangeably in this paper. If the
network is sequential, the memory elements are assumed to be
D-flip-flops with initial states. Terms memory elements, flop-
flops, and registers are used interchangeably in this paper.

A node n has zero or more fanins, i.e. nodes that are driving n,
and zero or more fanouts, i.e. nodes driven by n. The primary
inputs (PIs) are nodes without fanins in the current network. The
primary outputs (POs) are a subset of nodes of the network. If the
network is sequential, it contains registers whose inputs and
output are treated as additional PIs/POs in combinational
optimization and mapping. It is assumed that each node has a
unique integer called its node ID.

A cut C of node n, called root, is a set of nodes, called leaves,
such that each path from a PI to n passes through at least one leaf.
A cut is K-feasible if its cardinality does not exceed K. A cut is
dominated if there is another cut of the same node, contained, set-
theoretically, in the given cut. A fanin (fanout) cone of node n is
the subset of the nodes of the network reachable through the fanin
(fanout) edges from n.

A maximum fanout free cone (MFFC) of node n is a subset of
the fanin cone, such that every path from a node in the subset to
the POs passes through n. Informally, the MFFC of a node
contains all the logic used exclusively to generate the output
function of the node. When a node is removed due to redundancy,
the logic in its MFFC can also be removed.

Merging node n onto node m is a structural transformation of a
network that transfers the fanouts of n to m and removes n and its
MFFC. Merging is often applied to a set of nodes that are proved
to be equivalent. In this case, one node is denoted as the
representative of an equivalence class, and all other nodes of the
class are merged onto the representative. The representative can
be any node if its fanin cone does not contain any other node of
the same class. In this work, the representative is the node of the
class that appears first in a topological order.

2.2 And-Inverter Graphs
A combinational And-Inverter Graph (AIG) [22] is a directed

acyclic graph (DAG), in which a node has either 0 or 2 incoming
edges. A node with no incoming edges is a primary input (PI). A
node with 2 incoming edges is a two-input AND gate. An edge is
either complemented or not. A complemented edge indicates the
inversion of the signal. Certain nodes are marked as primary
outputs (POs). The combinational logic of an arbitrary Boolean
network can be factored [4] and transformed into an AIG using
DeMorgan’s rule.

Structural hashing of AIGs ensures that, for each pair of nodes,
all constants are propagated and there is at most one AND node
having them as fanins (up to permutation). Structural hashing is
performed by one hash-table lookup when AND nodes are created
and added to an AIG manager. When an AIG is incrementally
rehashed, the changes are propagated to the fanouts, which may
lead to rehashing large portions of AIG nodes.

The size (area) of an AIG is the number of its nodes; the depth
(delay) is the number of nodes on the longest path from the PIs to
the POs. The goal of AIG optimization by local transformations
of an AIG is to reduce both area and delay.

Sequential AIGs add registers to the logic structure of
combinational AIGs. The PIs and register outputs are called
combinational inputs (CIs) and the POs and register inputs are
called combinational outputs (COs). Although mostly
representing the combinational logic, simplified sequential AIGs
are still suitable for sequential transformations.

2.3 Technology Mapping with Structural Choices
A typical procedure for structural technology mapping consists

of the following step: 1) cut enumeration, 2) delay-optimal
mapping, 3) area recovery using heuristics, 4) producing the
resulting LUT network.

A detailed description of these steps is given in [7]. The main
drawback of the structural approaches to technology mapping is
their dependence on the circuit structure given to the mapper (also
known as the problem of “structural bias”). If the structure is bad,
neither heuristics nor iterative recovery procedures will lead to a
good result of mapping.

To overcome the bias of a single netlist structure, mapping with
structural choices (lossless synthesis) is explored in [5] and [24].
The structural choices are constructed by recording equivalent
circuit structures at a subset of nodes (called “choice” nodes).
These alternative structures come from synthesis transformations,
such as, AIG rewriting/balancing or co-factoring. As the mapper
traverses over these “choice” nodes in the subject graph, it can
explore the multiple alternative implementations simultaneously.
It is found that using structural choices over multiple passes of
LUT mapping yields significantly better results, compared to
mapping without choices or running only a single iteration of
mapping with choices [24]. Mapping with structural choices is
used in the experiments results section.

2.4 Sequential Synthesis
Combinational synthesis involves changing the combinational

logic of the circuit with no knowledge of its reachable states. As
a result, the Boolean functions of the POs and register inputs are
preserved for any state of the registers.

In contrast, sequential synthesis can modify the circuit while
preserving behavior on the reachable states and allowing arbitrary
changes on the unreachable states. Thus after sequential
synthesis, the POs and register inputs can be changed
combinational functions of the register outputs and PIs, but the
resulting circuit is sequentially-equivalent to the original.

A verifiable sequential synthesis is described in [27]. This is
based on identifying pairs of sequentially-equivalent
nodes/registers (i.e., signals having the same or opposite values in
all reachable states). Such equivalent nodes/registers can be
merged without changing the sequential behavior of the circuit,
leading to substantial reductions, e.g. some pieces of logic can be
discarded because they no longer affect the POs. The sequential
synthesis technique is used in the experimental results section.

3 Sequential Simulation (SimSwitch)
A sequential simulator applies sequences of values to the

primary inputs. It is assumed that the initial state of the design is
known and used to simulate the first frame. In subsequent frames,
the state derived at the previous iteration is used. Input
information (such as the probability of a transition occurring) can
be given by the user or produced by another tool (for example, if
an input trace is known, it may be applied to simulate the design).

In this work, sequential simulation is used to estimate switching
activity of registers and internal nodes. This is used later to guide
heuristic power-aware optimization. The design is sequentially
simulated for a fixed number of timeframes. The random input

patterns are generated to have a 0.5 probability of the probability
of the node changing its value (toggle rate) is fixed. Simulation is
performed from the initial state for a fixed number of cycles
(typically, 64), of which the first few (typically, 16) are skipped
as not representative of normal operation; the remaining ones are
used to accumulate the switching activity.

Previous work [6][8][12][18] concluded that the main problem
with sequential simulation for switching-activity estimation is the
prohibitive runtime of the simulator. In this work, we address this
problem with SimSwitch, based on new logic representation and
manipulationmethods. The salient features of the new simulator
are described below.

In general, the smaller the memory footprint of the simulator,
the faster it runs. This is due to a CPU having typically a local
cache ranging in size from 2Mb to 16Mb. If an application
requires more memory than fits into the cache, repeated cache
misses cause the runtime to degrade. Therefore, the challenge is
to design the simulator that uses minimalistic data-structures
without compromising the computation speed.

We found three orthogonal ways of reducing the memory
requirements of the simulator, without impacting its performance.

3.1 Compacting Logic Representation
Sequential designs are represented as AIGs. A typical AIG

package uses 32 or more bytes to represent one AIG object, i.e. an
internal AND node or a combinational input/output, which
includes flop outputs/inputs. We developed a special AIG
package that requires only 12 bytes per object. In the case of an
internal node, two integer fields, four bytes each, are used to store
the fanin IDs. The third integer field is used temporarily, during
duplication to store the ID of the object copy, or during structural
hashing to store the ID of the next node in the hash table. The new
representation takes about 12Mb for a typical AIG with 1M
objects.

3.2 Recycling Simulation Memory
When simulation is applied to a large sequential design, storing

simulated values for all nodes in each timeframe requires a lot of
memory. One way of saving memory, is to use the simulation
information as soon as it is computed and recycle the memory
when it is not needed. For example, to estimate switching activity,
we are only interested in counting the number of transitions seen
at each node. For this, an integer counter can be used, thereby
adding four bytes per object to the AIG package memory
requirements, while the simulation information does not have to
be stored.

Additionally, there is no need to allocate simulation memory for
each object of the AIG. At any time during simulation, we only
need to store simulation values for each combinational
input/output and some internal nodes. For industrial designs, the
number of internal nodes where simulation information should be
stored is typically 1-10% of the total. These are the nodes on the
simulation frontier, which is defined, at any time during
simulation, as all the nodes whose fanins are already simulated
but at least one fanout is not yet simulated.

The notion of simulation frontier has been used also to reduce
memory requirements for the representation of priority cuts [23].

3.3 Bit-Parallel Simulation of Two Time Frames
A naïve approach to estimate the transition probability for each

AIG node would be to store simulation patterns in two
consecutive timeframes. This information can be compared (using
bitwise XOR) and the number of ones in the bitwise
representation is accumulated while simulating the timeframes.

However, saving simulation information at each node for two
consecutive timeframes may require too much memory. For
example, an AIG with 1M objects requires 80Mb to store the
simulation information for two timeframes, assuming 10 machine
words (40 bytes) per object.

This increase in memory can be avoided by simultaneously
simulating data belonging to two consecutive timeframes. In this
case, comparison across the timeframes can be made immediately,
without memorizing the result of the previous computation. This
leads to duplicating the computation effort by simulating every
pattern twice, one using the previous state value and the other
using the current state value. However, the speedup due to not
having to traverse the additional memory greatly outweighs the
disadvantage of the re-computation.

4 Approaches to Power Minimization
In this section, two orthogonal ways of using switching activity

are described. The first (PowerMap) uses switching activity to
make better decisions during technology mapping while the
second (PowerDC) does power-aware re-synthesis after mapping.

4.1 Technology Mapping (PowerMap)
LUT-based mappers [7][19][23] have evolved from the first

technology mapping solutions for FPGAs [11][9], to those that
have reduced runtime, improved quality of results, and allow
users to select cost-functions employed during decision making,
as in [21]. In particular, a recent technology mapper [23] was
successfully modified to accommodate heuristics for reducing
wire-length and improving design routability (WireMap) [12][14].

We propose a similar modification of the priority-cut based
mapper [23] geared towards reducing switching activity, resulting
in an algorithm called PowerMap. Since the basic mapping
algorithm is described in detail in [23] and [14], here we only
describe the changes in the new cost function which use switching
activity to prioritize the cuts during technology mapping.

The intuition behind power-aware technology mapping is to try
to cover the nodes with high switching activity (or hot nodes) so
they are hidden inside a LUT. Since the capacitance inside a LUT
is very small, power consumption will be reduced.

The following three metrics are compared below:
• area flow [10][19][23],
• edge flow (WireMap) [14],
• switching flow (PowerMap) (this paper).
Area flow (AF) is defined as:

∑+=
))((

))(()()(
nLeafNumFanout

nLeafAFnAreanAF
i

i
i

, (1)

where Area(n) is the area of the LUT used to map node n, Leafi(n)
is the i-th leaf of the representative cut of node n, and
NumFanouts(Leafi(n)) is the number of fanouts of node Leafi(n) in
the currently selected mapping.

Edge flow (EF) is defined as:

∑+=
))((

))(()()(
nLeafNumFanout

nLeafEFnEdgenEF
i

i
i

, (2)

where Edge(n) is the total number of fanin edges (or wires) of the
LUT used to map the current representative cut of node n, while
other notations are the same as in (1).

Switching flow is defined as:

∑+=
))((
))(()()(

nLeafNumFanout
nLeafSwitchFlownSwitchnSwitchFlow

i

i
i

, (3)

where Switch(n) is the total switching activity at the output of
node n, computed using sequential simulation (from Section 3).
Intuitively, each of these flows is an estimate of a resource (area,
wiring, switching) associated with the logic rooted at node n.

The main idea is to compute for each cut three different metrics
(flows) capturing the global view of the netlist during mapping:
area flow, edge flow, and switching flow. When computing these
metrics, each cut is characterized by 1) its own resources used and
2) the resources used by its fanins. The value of a resource of a
fanin is divided by the number of the fanin’s fanouts.

Consider node n1 in Figure 1. The direct resources of n1 are: 1)
the node itself; 2) the three input edges; 3) the total resources for
the three edges. For nodes n2 and n4, half of the resources is used
by node n1 while the other half is used by other fanouts. For
node n3, all resources are used by node n1.

n1

n2 n3 n4

Resources owned
by the nodes

Resources owned
by the nodes

n5

Figure 1: Metrics used in PowerMap.

 The use of the cost function (3) during power-aware

technology mapping is similar to that of its use in (2) in wire-
aware mapping [14]. The main differences are as follows. When
comparing two cuts, their area flows are compared first, while
their switching flows are used as the first tie-breaker, i.e. if the
area flows of two cuts are equal up to a certain delta (say, 0.001),
the decision of what cut to use is made based on the switching
flow. Similarly, edge flow is used as the second tie-breaker.

Similarly, in the second phase of technology mapping when
local areas of cuts are compared [14], local switching is used as
the first tie-breaker and edge flow is used as the second tie-
breaker. The local area of a cut is the sum of the areas of the
LUTs in the MFFC of the cut. Similarly, the local switching of a
cut is the sum of switching activities of the LUTs in the cut’s
MFFC.

Formulas (1)-(3) provide different applications of the notion of
a flow when applied to technology mapping. The cost functions
measure increasingly complex netlist metrics, starting from area
(LUT count) to the number of fanins (routing wires) to the total
switching activity of fanins (power estimate), while the notion of
a flow captures the fact that each incoming flow is shared by the
fanouts of the fanins, which gives a global view of each cost
function during technology mapping.

4.2 SAT-Based Resynthesis (PowerDC)
An efficient approach to resynthesizing logic networks after

technology mapping is given in [27]. Its features are listed below:
• substantial optimization power, due to the use of internal

don’t-cares;
• scalable local computation, due to the use of windowing;
• computation speed, due to the use of Boolean satisfiability

for functional manipulation, and
• ability to accommodate various optimization objectives.

Resubstitution is a logic restructuring technique that modifies
the local space of a mapped node by adding or removing its
fanins. When applied to a Boolean network, resubstitution can be
iteratively applied, aiming at minimizing a given cost function,
such as area, delay, wire-length, etc.

The main idea of the power-aware flavor of the resynthesis
algorithm, called PowerDC, is summarized below. For details on
the basic algorithm and its implementation, refer to [20][27].

Given a mapped network, it is first transformed into an AIG by
applying Boolean decomposition of the logical functions of the
LUTs into two-input gates. Then sequential simulation is applied
to the AIG, resulting in the transition probabilities for all the AIG
nodes. This information is back-annotated to the mapped network
to provide the switching activity for all nodes in the mapping.

Next, a subset of wires, called hot wires, is identified. Based on
the experiments, if the toggle rate for primary inputs is 0.5, hot
wires are those with switching probability greater than 0.4. Note
that switching computed as a transition probability may be higher
than 0.5 (but cannot exceed 1.0). Another way of defining hot
wires might be a fixed ratio (say, 10%) of the wires with the
highest switching activity.

Based on an experiment described in Section 5, about 13.9% of
wires are hot and these contribute about 86% of the total power.
82.87% of wires are cool but these only contribute 1.74% of the
total power. A detailed distribution of wires (and nodes) by
switching activity and their power contribution are shown in
Figure 2. Since the vast majority of dynamic power is dissipated
in a small percentage of hot wires, power reduction techniques
targeting hot wires are very effective.

Power distribution

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Switching frequency (T5 is hot and T1 is cool)

Pe
rc

en
ta

g

Nodes Wire Pwr

Nodes 5.25% 1.09% 0.64% 0.84% 92.16%
Wire 13.90% 1.62% 0.91% 1.29% 82.27%

Pwr 85.90% 7.36% 2.68% 2.32% 1.74%

T5 T4 T3 T2 T1

Figure 2: Distribution of wires and nodes by toggle rate.

After hot nodes are found, SAT-based resubstitution [27] is

applied targeting hot nodes as fanins of other mapped nodes. The
goal is to remove or replace them by cooler fanins, as shown in
Figure 3. In this figure, Node n2 is a hot node, n8 is a cool node,
and Wire n2→n9 is the target to be either removed or replaced by
a cooler wire, such as n8→n9 in this case. This transformation
tends to reduce the total switching of the mapping, which, in turn,
leads to reduced dynamic power after place-and-route.

To save runtime, switching activity is not updated after
individual steps of resubstitution. This is reasonable because,
although Boolean functions of the nodes after resynthesis with
observability don’t-cares may be changed, their switching activity
does not change substantially. Even when it changes, the
percentage of nodes whose hot/cool status is modified during
resynthesis, is typically negligible.

n10

n9

n3
n4

n2

n8

x

n1

a b

n5

zn3

n10

n9

n3

n2

n8

n5

Resub the hot
wire with cool

n10

n9

n3

n2

n8

n5

Remove the hot
wire

Figure 3: Two ways to “cool down” hot wires.

5 Experimental Results
The algorithms of this paper are implemented in ABC [1].

Experimental evaluation targeting 6-LUT implementations were
performed using a suite of 20 large industrial designs ranging in
size from 12K to 165K 6-LUTs. The experiments were run on an
Intel Xeon 2-CPU 4-core computer with 8GB of RAM. The
resulting networks were verified using combinational equivalence
checker in ABC (command cec).

The power consumption of a circuit includes the sum of the
powers consumed by each wire, which is the product of the
capacitance and switching activity for all wires. Because the
netlists were not placed yet, the capacitance of wires were not
known. A unit-capacitance model is used in our experiments so
the focus on only reducing total switching activity for all wires.

The sequential simulator for estimating the switching activity
was based on a new AIG package, called “gia”. The following
commands in ABC were extended to be power-aware. In each
case, new switch “-p” enables switching activity minimization:
• Technology mapping for FPGAs [23] (command if –p).
• SAT-based resubstitution [27] (command mfs –p).
• Switching activity report (command ps –p).
Several other commands, including sequential synthesis and

mapping with structural choices, were used in this experiment:
• Structural sequential cleanup [26] (command scl).
• Partitioned register-correspondence computation using

simple induction [26] (command lcorr).
• Partitioned signal-correspondence computation using

k-step induction [26] (command scorr).
• Computation of structural choices [3] (command dch).

5.1 Simulation Runtime
As mentioned, one of the main issues with sequential

simulation is potentially long runtime. In this section, we perform
an experiment to show that running SimSwitch offers affordable
runtime for large designs.

Four industrial designs ranging from 304K to 1.3M AIG nodes
were simulated with different numbers of simulation patterns,
ranging from 2,560 to 20,480. The input toggle rate was assumed
to be 0.5. The results are shown in Table 1. Columns “AIG” and
“FF” show the number of AIG nodes and registers. The runtimes
for different sizes of inputs patterns are shown in the last columns.

Note that the runtimes are quite affordable even for Design C4
with 1.3M AIG nodes. In most cases, 2,560 patterns are sufficient
for node switching activity rates to converge to a steady state.

Table 1: Runtime of SimSwitch.

Runtime for inputs patterns (seconds) Design AIG FF
2560 5120 10240 20480

C1 304K 1585 0.1 0.2 0.2 0.4
C2 362K 27514 2.7 2.9 4.1 6.6
C3 842K 58322 7.4 7.6 10.2 18.2
C4 1306K 87157 12.1 15.4 15.7 24.2

5.2 Power-Aware Optimizations
To evaluate the contribution of power-aware mapping and

resynthesis, three experiments were performed, denoted
“Baseline”, “FullOpt”, and “PowerMap”.
• “Baseline” corresponds to two runs of (dch; if –e).

It performs priority-cut based technology mapping with
structure choices. WireMap [14] is not used for “Baseline”
because WireMap is known to reduce power dissipation as
a by-product of wire count minimization.

• “FullOpt” is the complete flow including high-effort
sequential and combinational logic synthesis. Sequential
synthesis (scl; lcorr; scorr) [26] is run first to remove
sequentially equivalent nodes and registers. Then, two
iterations of combinational synthesis and mapping with
structural choices are performed (dch; if). WireMap is used
in this flow. It reduces 10% of the wires on top of
“Baseline” [14].

• In the “PowerMap” run, “FullOpt” is used as the input
netlist followed by two runs (dch; if –p), which is the
power-aware technology mapping developed in this paper.

• In the “PowerDC” run, the results of “PowerMap” are used
as input followed by two iterations of power-aware
resynthesis (mfs –p).

The sequential simulator SimSwitch is used to drive the power-
aware logic synthesis. In sequential simulation, 2,560 random
input patterns with a toggle rate of 0.5 were used. The results are
reported in Table 4. Columns “PI”, “PO”, “FF”, and “LUT” show
the number of primary inputs, primary outputs, flip-flops, and 6-
input LUTs. Columns “Lv” and “Pwr” show the number of logic
levels and the total switching activity of the network.

The experimental results lead to the following observations:
• “FullOpt” improved on “Baseline” in the number of

registers, LUTs, and logic levels by 14.8%, 12.2%, and
3%, respectively. Power is reduced by 27%.

• “FullOpt”, “PowerMap”, and “PowerDC” have the same
number of registers because only combinational synthesis
is used in “PowerMap” and “PowerDC”.

• “PowerMap” produces an additional 10.5% power
reduction on top of “FullOpt”.

• “PowerDC” produces an additional 10.1% power reduction
on top of “PowerMap”.

• The overall power reduction for “PowerDC” vs. “FullOpt”
is 19.6%.

• The overall power reduction for “PowerDC” vs. “Baseline”
is 41.9%.

To investigate robustness of the algorithm, we performed the
same experiments and changed the toggle rate of the inputs from
0.5 to 0.25. The results are summarized in Table 2.
• “PowerMap” produces an additional 9.8% power

reduction on top of “FullOpt”

• “PowerDC” produces an additional 8.7% power reduction
on top of “PowerMap”.

• The overall power reduction for “PowerDC” vs. “FullOpt”
is 17.7%.

• The overall power reduction for “PowerDC” vs. “Baseline”
is 39.7%

Table 2: Comparison of power-optimization algorithms
(inputs toggle rate is 0.25).

Power BaseLine FullOpt PwrMap PwrDC

Geomean 17312.8 12687.5 11445.7 10445.8

Ratio 1 0.733 0.661 0.603

Ratio 1 0.902 0.823

Ratio 1 0.913

5.3 Wire Distribution Analysis
For the same suite of 20 designs, the changes in the distribution

of wires by their switching activity as a result of resynthesis is
analyzed. The results are reported in Table 3 and Figure 3.

Column “T5” is the total number of wires whose switching
probability exceeds 0.4. These “hot wires” are targeted by power
reduction. Column “T4” is the total number of wires whose
switching probability is between 0.3 and 0.4. Columns T3, T2,
and T1 are defined similarly. Thus the T1 wires are the cool
wires. In general, they don’t contribute much to the power
because their switching probability is less than 0.1.

The results in Figure 3 lead to the following observations:
• For “PowerMap vs. FullOpt”, hot (T5) wires are reduced

by 13.22%, and T4 are increased by 4.96%. This indicates
that PowerMap reduces the number of hot wires.

• For “PowerDC vs. PowerMap”, total wires are reduced by
2.7% but power is reduced by 10.1%. Thus, the resynthesis
has removed the “right” wires, i.e., the hot wires. Hot
wires are reduced by 11.04%. The cooler wires are reduced
also but the reduction is smaller in this case.

Wire Comparison

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

PowrMap vs FullOpt PowerDc vs. PowrMap

R
ed

uc
tio

n
(n

eg
at

iv
e

is
 g

o

T5 T4 T3 T2 T1 Total Wrs
Figure 3: The changes in wire ratios after two power-aware

transforms.

In addition to wire count reduction for hot wires, the wire
distribution in terms of toggle rates is also improved. Figure 4
shows the power distribution before and after optimization.
“Wire” and “Wire2” are the percentages of wires, while “Pwr”
and “Pwr2” are the percentages of power contributions before and
after optimization. The chart leads to the following conclusions:
• After “FullOpt”, 13.9% (82.3%) of the wires are hot (cool).
• After “PowerMap”, 11.4% (84.6%) of wires are hot (cool).
• After “FullOpt”, 85.9% (1.7%) of the power is contributed

by hot (cool) wires.

• After “PowerMap”, 82.6% (2.0%) of power is contributed
by hot (cool) wires.

The above observations show that the power contributed by hot
wires is less than “Baseline” while the power contributed by cool
wires is more than “Baseline”. The conclusion is that the power-
aware logic synthesis was able to shift the peak of power
consumption to lower-switching wires.

Power distribution before/after optimization

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Switching frequency (temperature)
Pe

rc
en

ta
g

Wire Wire2 Pwr Pwr2

Wire 13.90% 1.62% 0.91% 1.29% 82.27%

Wire2 11.44% 1.79% 0.93% 1.29% 84.55%

Pwr 85.90% 7.36% 2.68% 2.32% 1.74%

Pwr2 82.62% 9.48% 3.19% 2.69% 2.02%

T5 T4 T3 T2 T1

Figure 4: Power distribution before/after optimization.

6 Conclusions
This paper describes a toolbox for power-aware logic synthesis

and mapping. Estimation of power consumption at the early
stages of the design flow is based on calculating the probabilities
of signal transition during sequential simulation.

The toolbox also includes two techniques for optimizing the
design during synthesis and mapping to reduce switching activity
and thereby minimize dynamic power consumption:
• PowerMap: a power-aware LUT mapper that extends [23]

to prioritize cuts based on switching activity of the nodes.
• PowerDC: a SAT-based engine for resubstitution with

don’t-cares that extends [27] to remove signals with high
switching activity (so called “hot signals”).

Estimation of power dissipation is efficiently performed by a
new sequential simulator, SimSwitch. The estimation converges
for most industrial designs after a reasonable number of
simulation cycles. This allows for making targeted heuristic
decisions during logic synthesis and technology mapping

Future work will include:
• Speeding up switching activity estimation (it is estimated

that the current implementation can be made 50% faster).
• Extending switching activity computation to include glitch

estimation.
• Implementing other power-aware commands, such as

computing better choices to reduce power and logic
restructuring to reduce power.

• Developing sequential techniques for power reduction,
such as clock-gating, which uses induction to compute
signals that are valid clock gates on the reachable states.

Acknowledgements
This work is supported in part by SRC contracts 1444.001 and

1875.001, NSF grant CCF-0702668 entitled "Sequentially
Transparent Synthesis", and the California MICRO Program with
industrial sponsors Actel, Altera, Atrenta, Calypto, IBM, Intel,
Intrinsity, Magma, Mentor Graphics, Synopsys, Synplicity
(Synopsys), Tabula, Verific, and Xilinx.

References
[1] Berkeley Logic Synthesis and Verification Group, ABC: A system

for sequential synthesis and verification, Release 904xx.
http://www.eecs.berkeley.edu/~alanmi/abc/

[2] Altera, “Stratix II vs. Virtex-4 power comparison and estimation
accuracy” (white paper). http://www.altera.com/literature/wp/
wp_s2v4_pwr_acc.pdf

[3] J. Anderson and F. N. Najm, “Power-aware Technology Mapping for
LUT-Based FPGAs,” IEEE Int. Conf. on Field Programmable
Technology, Dec. 2002, pp. 211-218.

[4] R. Brayton and C. McMullen, “The decomposition of logic
functions,” Proc. ICCAD ’97, pp. 78-82

[5] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping”, Proc. ICCAD '05,
pp. 519-526

[6] D. Chen, J. Cong, and P. Pan, “FPGA design automation: A survey,”
Foundations and Trends in Electronic Design Automation, Vol. 1(3),
November 2006, pp.195-330.

[7] D. Chen and J. Cong. “DAOmap: A depth-optimal area optimization
mapping algorithm for FPGA designs,” Proc. ICCAD’04, pp. 752-
757.

[8] L. Cheng, D. Chen, and M.D. Wong, “GlitchMap: FPGA technology
mapper for low power considering glitches”. Proc. DAC '07.

[9] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs”, IEEE TCAD, Vol. 13(1), 1994, pp. 1-12.

[10] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” Proc. FPGA’99, pp.
29-36.

[11] R. J. Francis, J. Rose, and K. Chung, ”Chortle: A technology
mapping program for lookup table-based field programmable gate
arrays”, Proc. DAC ’90, pp. 613-619.

[12] A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of
average switching activity in combinational and sequential circuits”
Proc. DAC’92.

[13] S. Gupta and J. Anderson, “Optimizing FPGA power with ISE
design tools,” Issue 60, 2007, pp. 16-19, http://www.xilinx.com/
publications/xcellonline/xcell_60/xc_pdf/p16-19_60-gupta.pdf

[14] S. Jang, B. Chan, K. Chung, and A. Mishchenko, "WireMap: FGPA
technology mapping for improved routability". Proc. FPGA '08.

[15] J. Lamoureux and S.J.E. Wilton, “On the Interaction between Power-
Aware FPGA CAD Algorithms,”, Proc. ICCAD, Nov. 2003.

[16] J. Lamoureux and S.J.E. Wilton, “Activity estimation for Field-
Programmable Gate Arrays”, Proc. Intl Conf. Field-Prog. Logic and
Applications (FPL), 2006, pp. 87-94.

[17] J. N. Kozhaya and F. Najm, “Accurate power estimation for large
sequential circuits”, Proc. ICCAD’97.

[18] J. Lamoureux, “Modeling and reduction of dynamic power in Field-
Programmable Gate Arrays”, Ph.D. Thesis, 2007.

[19] V. Manohara-rajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for
area minimization in LUT-based FPGA technology mapping,” Proc.
IWLS ’04, pp. 14-21.

[20] A. Mishchenko and R. Brayton, "SAT-based complete don't-care
computation for network optimization", Proc. DATE '05.

[21] A. Mishchenko, S. Chatterjee, R. Brayton, and M. Ciesielski, "An
integrated technology mapping environment", Proc. IWLS '05, pp.
383-390.

[22] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis", Proc. DAC
'06, pp. 532-536.

[23] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton,
"Combinational and sequential mapping with priority cuts", Proc.
ICCAD '07, pp. 354-361.

[24] A. Mishchenko, S. Chatterjee, and R. Brayton, "Improvements to
technology mapping for LUT-based FPGAs", Proc. FPGA '06, pp.
41-49

[25] A. Mishchenko, R. K. Brayton, and S. Jang, "Global delay
optimization using structural choices", Proc. IWLS'08, pp. 1-6.

[26] A. Mishchenko, M. L. Case, R. K. Brayton, and S. Jang, “Scalable
and scalably-verifiable sequential synthesis”, Proc. ICCAD'08, pp.
234-241.

[27] A. Mishchenko, R. Brayton, J.-H. R. Jiang, S. Jang, "Scalable don't-
care-based logic optimization and resynthesis", Proc. FPGA '09.

[28] J. Najm, “Transition density: A new measure of activity in digital
circuits”, IEEE Trans. CAD, Vol. 12(2), 1993, pp. 310-323.

[29] PowerPlay Power Analysis, Quartus II 9.0 Handbook, Vol. 3,
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

[30] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage
current mechanisms and leakage reduction techniques in deep-
submicrometer CMOS circuits”, in Proceedings of the IEEE, pages
305-327, 2002

[31] E. Todorovich, M. Gliabert, G. Sutter, S. Lopez-Buedo, and E.
Boemo, “A tool for activity estimation in FPGAs”, Proc. Intl. Conf.
Field-Prog. Logic (FPL), 2002, pp. 340-349.

[32] Xilinx Power Estimator User Guide, http://www.xilinx.com/
products/design_resources/power_central/ug440.pdf

[33] Xilinx White Paper: Power Consumption in 65 nm FPGAs
http://www.xilinx.com/support/documentation/white_papers/wp246.
pdf

Table 3: Wire distribution by toggle rate (T5 stands hot wires).

 T5 (Hot) T4 T3 T2 T1 (Cool) Total Wrs

FullOpt 49992 5838 3283 4642 295828 359583

PowrMap 43383 6127 3224 4419 289494 346647

Reduction -13.22% 4.96% -1.80% -4.80% -2.14% -3.60%

PowrMap 43383 6127 3224 4419 289494 346647

PowrDC 38591 6047 3126 4358 285162 337285

Reduction -11.04% -1.31% -3.03% -1.38% -1.50% -2.70%

Table 4: Comparison of power-optimization algorithms. (inputs toggle rate is 0.5).

Design Statistics Base FullOpt PowerMap PowerDC

name PI PO FF LUT Lv Pwr FF LUT Lv Pwr FF LUT Lv Pwr FF LUT Lv Pwr

D01 4725 16657 43309 71956 14 63592 41868 70060 13 53666 41868 67214 12 49268 41868 65693 12 46139

D02 8561 20356 65881 144295 27 59306 41327 90304 27 34090 41327 86789 25 33418 41327 85798 25 30497

D03 8879 52334 41521 123845 11 79928 39884 122947 11 66571 39884 119625 10 61239 39884 117946 10 57068

D04 781 5563 16205 50328 10 38961 15123 48392 10 29901 15123 47361 9 26706 15123 46651 9 23938

D05 3343 5533 23740 65704 17 37158 18933 55512 13 25415 18933 52086 12 20771 18933 50973 12 16247

D06 3664 21989 29947 36188 8 36899 27896 33733 8 27844 27896 33220 8 25985 27896 32962 8 25351

D07 1284 2929 81328 164437 10 90849 74898 153317 11 66515 74898 145918 10 56595 74898 143357 10 52249

D08 261 359 4586 12412 22 6480 4463 12325 23 4938 4463 11986 21 4461 4463 11844 21 3326

D09 2561 9586 23612 55639 9 40244 16290 37736 8 21981 16290 35123 7 20053 16290 34103 7 17538

D10 3765 9987 37630 96677 31 62304 36665 95005 31 50132 36665 90167 30 43864 36665 88191 30 37483

D11 2418 6000 34834 76798 19 51724 34446 75724 20 43953 34446 70531 18 36783 34446 69117 18 32231

D12 1134 3965 8371 14939 12 11632 8256 15316 12 10480 8256 14825 12 9254 8256 14623 12 8624

D13 210 299 6662 15888 11 5766 6591 15381 11 3893 6591 14960 11 3265 6591 14710 11 2498

D14 2326 3713 61789 109865 18 22738 36887 67338 19 7956 36887 66681 17 7582 36887 66097 17 7537

D15 2312 5523 26233 49031 7 35819 13575 27498 6 20779 13575 26234 6 17972 13575 25871 6 16819

D16 5124 21571 39127 146931 17 18685 37772 146298 16 14087 37772 139226 16 13095 37772 135903 16 12966

D17 2587 7025 6975 12528 12 8152 6429 11780 12 7124 6429 11957 11 6904 6429 11834 11 6685

D18 3918 6110 23727 35996 13 24990 22260 34630 12 21728 22260 34215 10 19339 22260 33994 10 18297

D19 4633 7540 28376 43515 13 31148 26241 41415 12 26941 26241 41120 10 24176 26241 40839 10 22822

D20 6631 19368 58322 158216 25 101921 53581 144455 25 75781 53581 139174 22 64332 53581 136747 22 54554

Geom 2438 6590 25656 55456 14.1 31294 22118 48700 13.7 22621 22118 47049 12.6 20238 22118 46318 12.6 18190

Ratio 1 1 1 1 0.862 0.878 0.97 0.723 0.862 0.848 0.90 0.647 0.862 0.835 0.90 0.581

Ratio 1 1 1 1 1.000 0.966 0.92 0.895 1.000 0.951 0.92 0.804

Ratio 1 1 1 1 1.000 0.984 1.00 0.899

