

Efficient Solution of Language Equations Using Partitioned Representations

Alan Mishchenko, Robert Brayton, Roland Jiang
Department of EECS

University of California, Berkeley
Berkeley, CA 94720, USA

{alanmi, brayton, jiejiang}@eecs.berkeley.edu

Tiziano Villa
DIEGM

University of Udine
33100 Udine, Italy

villa@uniud.it

Nina Yevtushenko
Department of EECS

 Tomsk State University
634050 Tomsk, Russia

ninayevtushenko@yahoo.com

Abstract

A class of discrete event synthesis problems can be reduced to
solving language equations F • X ⊆ S, where F is the fixed
component and S the specification. Sequential synthesis deals with
FSMs when the automata for F and S are prefix closed, and are
naturally represented by multi-level networks with latches. For this
special case, we present an efficient computation, using partitioned
representations, of the most general prefix-closed solution of the
above class of language equations. The transition and the output
relations of the FSMs for F and S in their partitioned form are
represented by the sets of output and next state functions of the
corresponding networks. Experimentally, we show that using
partitioned representations is much faster than using monolithic
representations, as well as applicable to larger problem instances.

1 Introduction

Many important synthesis problems can be formulated in terms of
solving language equations. The unknown X represents an unknown
component in a known network of components, which together must
satisfy a given external specification. Examples are FSM synthesis,
game solving, protocol conversion, discrete control, testing, etc. The
solving for X is typically very hard, involving operations that are
exponential in complexity.

In many cases, hard computational problems can be reformulated
using decomposition and partitioning, which lead to computational
advantages. A good example is image computation [3], which is a
core computation in formal verification. In its simplest form, the
image of a set of states is computed using the formula:

,Img() [(, ,) ()],i csns T i cs ns csξ= ∃ ∧

where T(i, cs, ns) is the transition relation, ξ(cs) is the set of current
states, i is the set of input variables, and cs (ns) is the set of current
(next) state variables. The image, Img(ns), is the set of states
reachable in one transition under all possible inputs from the current
states, ξ(cs), using the state transition structure given by T(i, cs, ns).1

When the state transition structure is given by a sequential
network, the transition relation can be represented, for example, in
partitioned form using a set of next state functions, {Tk(i, cs)}, which
update the state of each latch 2 . The partition, {Tk(i, cs, nsk)},
represents how the next state of each latch, nsk, depends on the
values of inputs, i, and the current state, cs, of all latches:

1 We do not distinguish between sets, relations, and their characteristic
functions. Therefore, it is possible to think of ξ(cs), Img(ns), and T(i, cs,ns) as
completely specified Boolean functions represented using e.g. BDDs.
2 In this paper, we will illustrate the concepts using next state functions, but
the computations also work for the case of non-deterministic relations.

Tk(i, cs, nsk) = [nsk ≡ Tk(i, cs)]

The complete transition relations can be derived as the product of the
next state functions as follows:

T(i, cs, ns) = Πk Tk(i, cs,nsk) = Πk [nsk ≡ Tk(i, cs)]

We call T(i, cs, ns) the monolithic representation of the transition
relation and contrast it with the representation in terms of the
partition, {Tk(i, cs, nsk)}. Many problems can be solved using a
partitioned representation without ever resorting to monolithic one,
which may be impossible for larger problems. For example, the
image computation can be performed using the partitioned
representation by scheduling those cs variables, which do not appear
in some parts, to be quantified earlier [4][5]. In practice, this
approach to image computation leads to significantly smaller
intermediate BDDs, and has been responsible for dramatic increases,
both in efficiency and in the sizes of problems that formal
verification can solve.

The contribution of this paper is in proposing a way to use the
partitioned representation for solving language equations of the type
F • X ⊆ S, for the case when the automata for F and S are prefix
closed and represented by multi-level sequential networks.3 We show
how the partitioned representation can be used to perform the basic
operations of language equation solving: completing,
complementing, determinizing, hiding, and computing the product of
finite automata.4 An important aspect is that we show how most of
these operations can be reformulated in terms of image
computations, and hence can take advantage of the efficient
developments in this area.

Section 2 gives the details of the problem statement for the specific
case when the partitioned representation can be used. Section 3
outlines the computational procedures. Section 4 lists experimental
results. Section 5 concludes. In the appendix, we prove that the
determinization and completion operations commute, which makes
the computations more efficient.

2 Problem Statement

Given a sequential network and its specification, it is theoretically
possible to compute the Complete Sequential Flexibility (CSF) for a
sub-part. The CSF represents all possible legitimate sequential FSM
behaviors. They are legitimate in the sense that each can be
implemented in a circuit and used to replace the selected sub-part,

3 We assume the reader to be somewhat familiar with the concepts related to
solving language equations (e.g. see [1]).
4 Automata are used since all operations on FSMs are done by first
converting these into automata by not distinguishing between inputs and
outputs – a simple syntactic change. All states of the resulting automata are
accepting states.

resulting in another network that satisfies the specification5. The
initial research on capturing the maximum set of sequential behaviors
was developed in [9].

It can be shown [1] that the CSF, X, can be computed from the
most general solution of the language equation, F • X ⊆ S, where F is
the behavior of network without the selected part, X, and S is the
behavior of the original network as a whole or an external
specification. The CSF is the largest prefix-closed, input-progressive
automaton contained in X (and thus an FSM).

The interaction of F and X within the specification S is shown in
Figure 1.6 The external input and output variables are represented by
symbols i and o, respectively. The internal variables that are the
inputs and outputs of X are represented by symbols u and v,
respectively. Note that in Figure 1 and in the formulas below we do
not distinguish between the sets of symbols used to construct the
input/output languages of F, X, and S, and the sets of variables i, u, v,
and o, used to encode these symbols.

The most general (the largest) solution of the language equation is
the following [1]:

X = ,
,)[(, , ,) ((,)] u v

u vF i v u o S i o ⇓⇑• (1)

where symbol • denotes the composition of languages (the direct
product of automata), the horizontal bars denote the
complementation of a language (automaton), and the symbols ⇑ ⇓
denote the expansion and restriction, respectively, of a language to a
set of symbols. Expansion causes the insertion of the listed symbols
into the language, while restriction leads to “hiding” the unlisted
symbols on the inputs or arcs of the automaton.

Figure 1. A topology showing the interaction of components F and

X in the language solving problem.

We assume that the behaviors of the components F and S are

represented by multi-level sequential networks, similar to the one in
Figure 2. The external variables of such networks are the primary
inputs (i), the primary outputs (o), and the latches having the current
state (cs) and next state (ns) variables. We assume that the latch next-
state functions, {Tk(i, cs)}, and the primary-output functions, {Oj(i,
cs)}, can be computed and stored as BDDs in terms of the primary
inputs and the current state variables.

The automata for F and S are derived, from the multi-level
networks representing them, simply by taking the set of inputs of
these automata as the union of the sets of inputs and outputs of the
corresponding network. In the sequel, we use the terms “inputs” and
“outputs” meaning the inputs and outputs of the network. All
reachable states of a network are the accepting states of the

5 However, it does not address implementations that can have combinational
loops or that are not compositionally progressive [10].
6 The results of this paper are not limited to the particular topology of Figure
1, but we confine the discussion to that of Figure 1 for ease of presentation.

corresponding automaton, since F and S are FSMs and hence are
prefix-closed. A “don’t-care” (DC) state can be added to make an
automaton complete. This is done by making all automaton input
combinations, for which the behavior of a state is not defined,
transition to DC, which becomes the only non-accepting state.
Prefix-closed dictates that DC has a universal self-loop.

Figure 2. The structure of a sequential network.

Example. Figure 3 shows a sequential circuit and its corresponding

automaton. The circuit has input i, output o, and two latches, with
current state variables cs = {cs1, cs2} and next state variables ns =
{ns1, ns2}. The initial state of the latches is (00). The next state
functions of the latches are T1(i, cs) = i & cs2 and T2(i, cs) = i + cs1.
The two parts of the transition relation are

T1(i, cs, ns1) = [ns1 ≡ T1(i, cs)] = [ns1 ≡ i & cs2] =
ns1 & i & cs2 + 1ns &(i + 2cs)

T2(i, cs, ns2) = [ns2 ≡ T2(i, cs)] = [ns2 ≡ (i + cs1)] =

ns2 & (i + cs1) + 2ns & i & 1cs).

The single output relation is 1 2 1 2(, ,) [()]O cs cs o o cs cs= ≡ ⊕ .

Figure 3. A sequential network and its automaton.

The states of the automaton in Figure 3 are labeled with the latch

values (cs1,cs2). Transitions (arcs) are labeled with (i,o) values. Thus,
the transition from state (00) under input 0 is to state (01). The output
produced by the network in this case is 0. So the label of this
transition is 00 (equal to 0/0 using conventional FSM labeling). This
automaton is not complete. Thus, the transition from (00) under input
(11) is not defined. The unshaded states are accepting. The additional
(shaded) state (DC), added for completion, is not accepting. DC has a
universal self-loop and all transitions that were originally undefined
(e.g. from (00) under input (11)) are directed to DC.

Monolithic Representation of Relations. The monolithic
representations of the transition and output relations of the automaton
can be obtained from the next-state and output functions:

T(i, cs, ns) = Πk [nsk ≡ Tk(i, cs)],

O(i, cs, o) = Πk [ok ≡ Ok(i, cs)].

The monolithic representation of the complete transition-output
relation of the automaton is:

00

10

01

10

00

-1 11

01

-0

-1

-0

--

DC

ns

cs

cs

o

i

latches

o

i

ns1 ns2

cs2 cs1

F

S

X

i o

v u

TO(i, o, cs, ns) = T(i, cs, ns) & O(i, cs, o).

TO specifies what the next state is for each current state and each
input/output combination. A relation is not well-defined if there
exists some input/output/current-state combination for which the
behavior of the automaton is not specified, i.e. the automaton is
incomplete.

As an example of the use of the monolithic representation TO,
consider the operation of completion of an incomplete automaton.
The transition-output relation of the completed automaton is

'(, , ,) (, , ,) (, ,) () () (),TO I o cs ns TO i o cs ns A i o cs DC ns DC cs DC ns= + +

where A(i,o,cs) = (, , ,)nsTO i o cs ns∃ is the sub-domain of
input/output/current-state variables for which the original automaton
is not defined, and DC is the code (in terms of latch variables) of the
“don’t-care” state added during completion. Note that we cannot use
the code of an unreachable state to represent the DC because the
unreachable states have next states. To encode the DC we need to
add an additional state variable.

Thus the resulting relation is derived from the original one by
simply directing all undefined transitions to DC and then adding a
universal self-loop to DC.

Partitioned Representation of Relations. The disadvantage of
monolithic representations is that they include all variables and
hence their BDDs may be huge. Even if these can be computed, the
operations, such as completion, product, determinization, become
very inefficient if not impossible to complete. If the set of reachable
states is much smaller than the set of all states, re-encoding the
monolithic relations using fewer state bits may alleviate this
problem. However, re-encoding can be very slow and our experience
indicates that this tends to increase the BDD sizes of the relations.

In this paper, we show how partitioned representations can be used,
both in making computations more efficient and in allowing larger
problems to be solved. The monolithic transition and output relations
are never constructed. With a partitioned representation, the
functionalities of the automata are represented as sets of functions,
{Tk(i, cs)} and {Ok(i, cs)}. All Boolean operations are performed
using these functions. It will be shown that image computation plays
the key role in the manipulations involving partitioned
representations, and hence a decade of research resulting in
techniques to speed up image computations [4][5][8] can be used.7

3 Computation Algorithms

This section describes how to perform operations on the automata,
required for language equation solving, when the partitioned
representations are available. First, we present the main algorithm for
the computation using either monolithic or partitioned
representations. Later we show that, given the partitioned
representations, all the steps are essentially embedded into a
modified determinization procedure, so that there is no need to
compute the completion and variable hiding operations as separate
steps. However, in Section 3.2 for generality we show how these
operations can be performed independently of determinization.

7 Space constraints prohibit describing all these advancements; we
experimented extensively with implmenting most of proposed techniques and
chose the methods that we observed to be most efficient.

3.1 Main Algorithm
The main generic algorithm (shown below) first derives the most

general solution from the equation X = SF D , followed by an
additional prefix-closed and progressive operation on the solution X,
to make it an FSM. Later, we show how to make the computations
more efficient.

Algorithm: LanguageEquationSolving
Input: prefix closed S(i,o) and F(i,v,u,o)
Output: most general prefix closed solution X
begin
01 X:=Complete(S)
02 X:=Determinize(X)
03 X:=Complement(X)
04 X:=Support(X,(i,v,u,o))
05 X:=Product(Complete(F),X)
06 X:=Support(X,(u,v))
07 X:=Determinize(X)
08 X:=Complete(X)
09 X:=Complement(X)
10 X:=PrefixClose(X)
11 X:=Progressive(X,u)
12 return X
end

Algorithm 1: Generic Algorithm for computing the most general
prefix-closed progressive solution.

Support (used for both expansion and restriction) changes its
argument automaton to have the support of the given list of variables.
Complete adds one additional non-accepting state with a universal
self-loop, and causes all undefined inputs to transition to it.
PrefixClose removes all non-accepting states. Progressive
recursively removes those states that are not completely specified in
terms of the input variables, u, of X (i.e. not input-progressive). The
other operations are self-explanatory.

3.2 Elementary Operations using Partitioned
Representations

In the application to the problem where the topology is as shown in
Figure 1, we have partitions for F (which has both u and o as
outputs):

1 1 1{ (, , ,)},{ (, , ,)},{ (, , ,)}F F
j j j j j jT i v cs ns U i v cs u O i v cs o ,

and those for S:

2 2{ (, ,)},{ (, ,)}.S S
j j j jT i cs ns O i cs o

Completion. An automaton derived from an FSM is completed by
interpreting the complement of its output relation as the condition for
a transition from the current state to the non-accepting DC state. The
complement of the output relation, (, ,)O i o cs , gives, for each
current state, cs, all the input/output combinations, for which the
automaton’s behavior is not defined, since an FSM is defined for all
its input combinations. When the partitioned representation is used,
there is no need to construct the monolithic representation of
O(i,o,cs). For any current state, given by its characteristic function
ξ(cs), its undefined input/output combinations, Q(i,o), can be found
by an image computation followed by complementation:

Q(i,o) =)(&),,(cscsoiOcs ξ∃ .

This image can be efficiently computed using the partitioned
representation of the output relation:

Q(i,o) = [(,)]& ()cs j
j

o O i cs csξ∃ ≡∏ .

Complementation (deterministic case). In the general case of
non-deterministic automata, determinization (subset construction) is
required before complementation. In contrast, a deterministic
automaton is easily complemented by interchanging the sets of its
accepting and non-accepting states. Thus computing S , which is
deterministic, is easy.

When an automaton is derived from a deterministic multi-level
network, its set of accepting states is equal to the set of reachable
states of the network. The DC state introduced during completion is
the only non-accepting state. In this case, complementation is
performed by changing the interpretation of the DC state: it becomes
the only accepting state, while all other states become non-accepting.

Product computation. The product of two automata is defined
when they have the same support. In the partitioned view, having the
same support simply means that each function is considered as a
function of the full set of variables. When the argument automata are
represented in their partitioned forms,

1 1 2 2{ (, , ,)} and { (, ,)}F S
j j k kT i v cs ns T i cs ns ,

the partitioned representation of the product automaton, is simply the
union of the two partitions, i.e.

1 1 1 2 2 2(, , ,) { (, , ,), (, ,)}j j k kT i v cs ns T i v cs ns T i cs ns= .

The fact that some variables, for example, u and o, are missing,
means that the relations are independent of these variables.

Hiding variables. Hiding variables i and o in the automaton
representing the product of F and S is an operation which changes
the support automaton. In the monolithic form, it is performed by
existentially quantifying the variables, not in the support, from the
transition-output relation TO of the product automaton:

TO′(v,u,cs,ns) = ∃i,o[TO(i,v,u,o,cs,ns)].

This operation usually leads to a non-deterministic automaton, even
if the original automaton is deterministic. Hiding variables cannot be
performed on the partitioned representation because the operations of
existential quantification and product do not commute. For example,
it is not possible to quantify the input variables i from the transition
relation by quantifying them independently from each partition:

∃i T(i,cs,ns) = ∃i Πj [nsj ≡ Tj(i,cs)] ≠ Πj ∃i [nsj ≡ Tj(i,cs)].

Thus hiding can’t be done by acting on the partitions independently.
However, a key observation is that the hiding operation can be built
into the next step, the determinization procedure, in such a way that
there is no need to derive the monolithic transition relation and then
apply hiding to it.

Determinization (Subset Construction). Determinization is
performed by enumerating explicitly the subsets of states of a non-
deterministic automaton, which are reachable from the initial subset
state (which contains only the initial state). The basic step is the
computation of the subset of states, reachable under various

assignments of (u,v) from a given subset of states, ζ(cs). Denote by
Pζ(u,v,ns) the sets of states (the subset states) reachable from ζ(cs)
under various combinations of (u,v). Using the monolithic
representation, with variable i hidden, the computation would be:

(, ,) (, , ,) (, , ,) ()cs iP u v ns U i v cs u T i v cs ns csζ ζ= ∃ ∃ .

The computation of Pζ using the partitioned form is:

,(, ,) [(, ,)] [(, ,)] ()i cs j j j k k kP u v ns u U i v cs ns T i v cs csζ ζ= ∃ Π ≡ Π ≡
Thus, the computation of Pζ(u,v,ns) can be seen as the computation
of the image of ζ(cs), under the transition relation U(i,v,cs,u)T(i,v,cs)
represented in its partitioned form: {Uj(i,v,cs)}, {Tk(i,v,cs)}, where
hiding (quantification) of variables i is performed as part of the
image computation.

Let Cj(i,v,cs) denote the condition that is true when the j-th output
of F conforms to the j-th output of S:

1 2(, ,) [(, ,) (,)]F S
j jk jk

k

C i v cs O i v cs O i cs= ⇒∏ ,

where cs = (cs1,cs2) and the iteration is over all values k of the output
Oj , e.g. for binary signals, {0,1}.k ∈

Let (, ,) (, ,)j jC i v cs C i v cs= Π , which is the overall condition when
all outputs of F conform to the outputs of S:

1 2(, ,) [(, ,) (,)]F S
jk jk

j k

C i v cs O i v cs O i cs= ⇒∏∏ .

Next, we compute (,)Q u vζ , the condition when the current subset

of states ζ(cs) leads to the non-conformance of outputs of F and S:

, 1(,) [(, , ,) (, ,) ()]i csQ u v U i v cs u C i v cs csζ ζ= ∃ .

Since these combinations of (u,v) can lead to a non-conforming state,
we exclude such transitions and map them all into a single non-
accpeting state DCN with a universal self loop. We remove these
combinations from consideration by restricting Pζ(u,v,ns) to those
(u,v) that are not contained in (,)Q u vζ :

(, ,) (, ,) & (,)P u v ns P u v ns Q u vζ ζ ζ=

Finally, the result is made complete by adding a state DCA (which is
accepting in the final answer after complementation), with transitions
from ()csζ into it for all (u,v), which are not contained in

(,)Q u vζ .

Note that (, ,)C i v cs can be represented as the sum of output non-
conformance conditions for each output. Therefore, the computation
of (,)Q u vζ can be done one output at a time, without computing the
monolithic relation for C(i,v,cs).

Validity of the computation. The maximum prefix-closed solution
(required for an FSM implementation) is computed after
determinization and completion, when the set of reachable subset
states, {ζ(cs)}, are known and, for each of these, the function

(,)Q u vζ has been computed, which defines the transitions from this
subset state into a newly added non-accepting state DCA.

To perform the complementation, which is the last step in
computing the maximum solution, the accepting and non-accepting
states are switched. To do this, we need to determine what the
accepting states are after the previous steps of computation. It is

helpful to follow the computation process starting from the initial
automata, F and S, and consider the two types of their states: the
accepting states (labeled a) and the non-accepting states.

• S could be completed by adding a new state DC1 which would
be its only non-accepting state, because S is represented by the
multi-level network and so is prefix closed.

• In ,S DC1 would be the only accepting state. (If S is non-
deterministic, {DC1} would be the only accepting (subset)
state.)

• Since F was left incomplete and is prefix closed, all states of F
are accepting.

• When forming the product F • S , a product state is accepting

only if both states are accepting. Thus, in F • S , the only
accepting states would be those with labels (a,DC1) i.e.
accepting in F and accepting in S .

• In the subset construction, a subset state is accepting if at least
one product state in the subset is accepting, i.e. of type (a,DC1).
If such occurs, then those transitions represented by (,)Q v uζ
are redirected to DCN, since in the final answer, these states are
not accepting8. The new completion state, DCA, added after the
subset construction to complete it, is non-accepting for the
determinized product F • S , but accepting in the final answer.

• Finally, in the complement of this product, which is the
maximum solution, the set of accepting states are DCA plus all
the subset states which are left in (, ,)P u v cs after Qζ has
deleted all those that lead to DCN.

Thus all non-accepting subset states are mapped into DCN. As
mentioned, this can be done because we will make the answer prefix-
closed, a requirement for an FSM. (Thus, the X computed is the most
general prefix-closed solution.) This requirement increases
efficiency, because during the subset construction, as soon as a state
of type (a,DC1) is encountered in a subset state, ζ, it can be replaced
with DCN. This efficiently reduces the number of subset states that
emanate from such Sk. Further, those states that are trimmed
immediately by this need not be explored for reachability from them.
This leads to a substantial trimming during the subset construction. It
can be traced back to the fact that S is prefix-closed, and we want X
to be prefix-closed.9

Similarly, the existence of the single state, DCA, stems from the
fact that F is prefix-closed. This allows for deferring the completion
of F until the subset construction.

Finally, to make X into a FSM automaton, it is made input-
progressive. This step is the same for both the monolithic and
partitioned case and is not detailed here.

Note that in the partitioned flow, neither S nor F is made complete.
In effect such completion is deferred to the all-inclusive

8 Note that it is not necessary to compute subset states which emanate from
such a state since once reached, we know that all input sequences with this
prefix are not in the language of an FSM.
9 While this trimming can be substantial, there is no avoiding that subset
construction can be exponential. However, it has been a common experience
among those who have implemented subset construction, that in practice, it
can be surprisingly efficient with relatively few subset states reached,
sometimes leading to a reduction in the number of states.

determinization step. The validity of this is substantiated by the
Appendix which proves that the determinization and completion
operations commute and observes that completion also commutes
with complementation and product.

4 Experimental results

In this section, an implementation of Algorithm 1 using the
partitioned representations is compared with the implementation
using the monolithic representations. In effect, the partitioned
implementation performs only the determinization procedure, which
subsumes all other steps, as described above. In the case of the
monolithic representations, the completion of S is done first, then the
intermediate product is derived, followed by hiding and
determinization, performed in a traditional way.

The examples for this experiment were derived from FSM
benchmarks by an operation called latch splitting. This is a syntactic
transformation of a sequential circuit into two circuits, one
containing a subset of the latches of the original circuit and the other
containing the rest. One of these becomes the fixed component, F, in
the language solving problem while the other represents a particular
solution, XP, for the “unknown” component. The sequential behavior
of the original circuit is used as the specification. We compute the
complete sequential flexibility (CSF – the largest prefix-closed, input
progressive sub-automaton of the most general solution.) Since XP, is
a particular, it is contained in the CSF.

After computation of CSF, X, it was formally verified by checking
(1) PX X⊆ , and

(2) PF X S F X⊆ ≡i i .

Table 1 lists the results for several examples. The columns show
the example name (column “Name”), the number of inputs, outputs
and latches (column “i/o/cs”), the number of latches in the fixed part
and in the current implementation of the unknown (column
“Fcs/Xcs”), the number of states in the CSF (column “States(X)”), the
runtime in seconds of the partitioned algorithm (column “Part”) and
runtime in seconds using monolithic representations (column
“Mono”), and finally the ratio of these runtimes (column “Ratio”).

The algorithms were implemented in the MVSIS environment [6].
The measurements were made on a Windows XP computer with a
1.6 ghz CPU.

Table 1. Comparison of partitioned and monolithic computations.

Name i/o/cs Fcs/Xcs States(X) Part,s Mono,s Ratio

s510 19/7/6 3/3 54 0.3 0.2 0.7
s208 10/1/8 4/4 497 0.4 0.8 2.0
s298 3/6/14 7/7 553 0.9 2.7 3.0
s349 9/11/15 5/10 2626 37.7 810.3 21.5
s444 3/6/21 5/16 17730 25.9 CNC -
s526 3/6/21 5/16 141829 276.7 CNC -

The results show that the partitioned method is more efficient

(except for very small examples) with efficiency increasing as the
problem size increases. At some point, the monolithic method can
not complete (CNC) when the intermediate automata become
relatively large. Of course, even the partition method runs out of
steam at a certain point, but note that on one example it could handle
over 140,000 states in the CSF.

5 Conclusions

We presented a strategy for solving language equations when the
fixed component and the specification are represented using multi-
level deterministic sequential networks. In such cases, a partitioned
representation derived from the original network can be used to
perform all the operations needed to compute the maximum solution.
We showed the operations required can be re-formulated in terms of
image computations, which can take advantage of the advances made
in the efficiency of these computations over the last decade. The
proposed methods allow for faster solution of larger problem
instances. We emphasize that the techniques described in this paper
rely heavily on the fact that both automata, F and S, are represented
initially by multi-level sequential networks and hence are prefix
closed, and that the desired answer is also prefix closed.

In the Appendix, we argue that not completing F in the algorithm
leads to the same answer. This has two important consequences.
First, it is not necessary to form the completion conditions before
computing the product or its determinization. This saves a lot of
computing. Second, completion of F can lead to a non-deterministic
product after hiding, while leaving F incomplete leads to a
deterministic product after hiding. Thus a subset construction is
avoided when F is not completed.

Finally, we note that finding the CSF is only one step in sequential
synthesis. Finding an optimum sub-solution of the CSF remains the
outstanding problem for future research.

Acknowledgements
The first three authors gratefully acknowledge the support of the

National Science Foundation under contract CCR-0312676, and the
California Micro program with our industrial sponsors, Intel, Fujitsu,
Magma, and Synplicity. The fourth author gratefully acknowledges
the support of the MADESSII Project (Italian National Research
Council). The fifth author was partly supported by the Russian
Ministry of High Education (Grant UR.04.01.018). We gratefully
acknowledge the support of a NATO travel grant (NATO Linkage
Grant No. 971217).

6 Appendix: Validity of Non-Completion of F

Theorem 1: To determinize an finite automaton A, the following
two procedures are equivalent.

1. Complete(Determinize(A), non-accepting)
2. Determinize(Complete(A, non-accepting))

Proof: We show that these two procedures yield the same result

by comparing subset constructions without and with pre-completion.
Let DC denote the added non-accepting state. Recall that DC has a
universal self-loop. It is clear that if {s1, …, sk} is a subset state in the
automaton constructed by Procedure 1, then there must exist subset
state {s1, …, sk} and/or {s1, …, sk, DC} in the automaton constructed
by Procedure 2. Also, if subset state {s1, …, sk} or {s1, …, sk, DC}
exists in the resultant automaton of Procedure 2, then subset state {s1,
…, sk} must exist in the resultant automaton of Procedure 1. Observe
that

• DC state is non-accepting. A subset state is accepting if and
only if one of its states is accepting. Thus, state {s1, …, sk} is
accepting if and only if state {s1, …, sk, DC} is accepting.

• Under any transition condition, the successor states of {s1, …,
sk} are the same as those of {s1, …, sk, DC} except that the
latter contains the DC state.

Applying induction on the state space with the above two facts, it
follows that subset states {s1, …, sk} and {s1, …, sk, DC} are
equivalent. On the other hand, if a subset state {s1, …, sk} or {s1, …,
sk, DC} can transition to the singleton subset state {DC} under some
transition condition, then all of the member states s1, …, sk must be
incomplete under this transition condition. Therefore, it is immaterial
whether the completion is done before or after the determinization.

QED

Other trivial propositions state that completion commutes with
both the complementation and product operations. Corollary 1
follows from these observations and Theorem 1.

Corollary 1: Let X be the solution obtained by Algorithm 1 when F
and S are not completed and let Y be the solution when F and S are
made complete first. Then the languages of X and Y are identical.

References

[1] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. L.
Sangiovanni-Vincentelli, “Sequential synthesis by language
equation solving”, Technical Report, 2003.

[2] N. Yevtushenko, S. Zharikova, and M. Vetrova, “Multi
component digital circuit optimization by solving FSM
equations”, Proc. Euromicro Symposium on Digital System
Design, 2003, pp. 62-68.

[3] H. Touati, H. Savoj, B. Lin, R. K. Brayton, A. Sangiovanni-
Vincentelli, “Implicit state enumeration of finite state machines
using BDDs”, Proc. ICCAD ‘90, pp. 130-133.

[4] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, C. Pixley,
“Efficient BDD algorithms for FSM synthesis and verification”,
Proc. IWLS ’95.

[5] P. Chauhan, E. M. Clarke, S. Jha, J. Kukula, T. Shiple, H.
Veith, D. Wang, “Non-linear quantification scheduling in image
computation”, Proc. ICCAD ’01, pp. 293-298.

[6] MVSIS Group. MVSIS. UC Berkeley.
http://www-cad.eecs.berkeley.edu/mvsis/

[7] F. Somenzi. BDD package “CUDD v. 2.3.0.”
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

[8] C. Wang, G. D. Hachtel, and F. Somenzi. "The compositional
far side of image computation," Proc. ICCAD '03, pp. 334-340.

[9] Y. Watanabe and R.K. Brayton. “The maximum set of
permissible behaviors for FSM networks.” Proc. ICCAD ‘93,
pp. 316-320.

[10] Nina Yevtushenko, Tiziano Villa, Robert K. Brayton, Alex
Petrenko, Alberto Sangiovanni-Vincentelli, “Compositionally
progressive solutions of synchronous language equations”,
Proc. IWLS ’03, pp. 148-155.

