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Abstract 

Both non-determinism and multi-level networks compactly 
characterize the flexibility allowed in implementing a circuit. 
A theory for representing and manipulating non-deterministic (ND) 
multi-level networks is developed. The theory supports all the 
network manipulations commonly applied to deterministic binary 
networks, such as node minimization, elimination, and 
decomposition. It is shown that an ND network’s behavior can be 
interpreted in three ways, all of which coincide when the network is 
deterministic. Operations performed on an ND network are 
analyzed under each interpretation for changes in a network’s 
behavior. Modifications of a few operations are given which must 
be used to guarantee that a network’s behavior does not violate its 
external specification. These modifications depend on which 
behavior is being used and the location of related non-determinism. 
This theory has been implemented in a system, MVSIS. We provide 
comparisons among the uses of the various behaviors. 

1 Introduction 

A non-deterministic (ND) network is similar to a Boolean 
network, except that, in general, each node has a multi-valued 
(MV) output and is represented by a non-deterministic relation. 
The familiar don’t cares used in logic synthesis are a special form 
of non-determinism. For example, don’t cares specify for some 
input minterms, the output can take any of the values in its range, 
while more generally, non-determinism occurs when, for an input 
minterm, the output can take values from a subset of values in the 
range of the output.  

Non-determinism arises naturally in a synthesis setting. For 
example, a system’s specification may be given by an ND network 
or automaton. Part of the system may be given also. To be 
synthesized is an unknown sub-component. The set of all possible 
behaviors for the unknown can be derived as an ND relation or ND 
automaton, using complementation and composition operations 0.   

In logic synthesis, an initial network representation can be given 
with “compatible” don’t cares at the primary outputs. Some RTLs 
allow incomplete behavior to be specified at internal nodes. This is 
interpreted as don’t care, i.e. for the unspecified inputs, the output 
can take any value allowed for the variable. Don’t cares can also be 
derived from a network’s functionality in terms of observability 
(ODC) and satisfiability (SDC) don’t cares. Generalization of 
these concepts to MV networks leads to the more general notion 
of non-determinism.  

Starting from the initial specification, synthesis consists of 
operating on a Boolean network to obtain a smaller, faster, more 

efficient one, which finally is mapped into a set of logic gates for 
implementation in hardware. When these operations are 
generalized to account for non-determinism, an analogous network 
and set of operations is desired. The use of such networks can lead 
to final more efficient deterministic binary implementations, since 
the generalization to MV ND networks allows a larger space for 
optimization algorithms to explore [3]. 

We define three network simulation models (SS, NS, NSC) for 
ND networks, which lead to three types of network “behaviors”. 
A behavior is defined to be the set of all primary-input primary-
output pairs of vectors that can be simulated for the network. All 
three newly defined behaviors reduce to the same unique behavior 
if the network is deterministic. In the binary case, one of these 
simulation models (SS) is analogous to ternary simulation with the 
three values, {0,1,X} [1]. We analyze how the corresponding ND 
network behaviors can change under various common network 
operations, such as decompose, substitute, eliminate, collapse, 
node minimize, and merge [8]. It was found that some of the 
classical operations need to be modified to account for the effects 
of non-determinism. We also study the limits (flexibility), within 
which the functionality of a node in an ND network can be 
changed without violating the external specification. For all 
behaviors, we derive a formula for computing the complete 
(maximum) flexibility (CF) allowed at the node.  

The paper is organized as follows. In Section 2, we define an ND 
network and give some notation. Section 3 discusses the three 
methods for interpreting the behavior of an ND network. In 
Section 4, we give for each behavior type, methods for computing 
the complete flexibilities (CFs) at a node and show that these 
cannot increase any of the respective network behaviors when any 
“well-defined” sub-relation of the CF is used to replace the old 
relation at the node. Section 5 discusses the node elimination 
process, Section 6 extraction and decomposition, and Section 7 
merging. In each case, we analyze how the respective operations 
can change the three types of network behaviors. Section 8 
discusses the relative merits of the two computationally more 
viable behaviors, NSC and SS. Section 9 discusses how each of 
these behaviors can be made to fit into a hierarchical theory where 
a network can be partitioned and sub-parts can be optimized 
separately. Section 10 discusses modifications on the two 
operations (one for NSC and one for SS), which could increase the 
corresponding behavior, to ensure that the network always 
satisfies its specification. Section 11 discusses some experimental 
results which compare the use of the different behaviors in terms 
of the relative sizes of the flexibilities allowed. Section 12 
concludes, summarizing the contributions and listing some longer-



term goals for the application of this theory and its 
implementation. 

Because of restricted space, no proofs are given in this paper. 
However, all results have been proved and the proofs tested 
against a number of readers. For the proofs, please refer to a more 
extensive report [5]. In addition, the theory has been implemented 
in a system, MVSIS, (http://www-cad.eecs.berkeley.edu/mvsis/) 
and experimental results are consistent with the theory. Our 
implementation indicates that runtimes penalties incurred for the 
generalization to MV and non-determinism are minimal. Because 
most algorithms had to be completely re-implemented, we used 
this opportunity to improve the efficiency of the algorithms and 
data-structures. Experiments indicate that runtimes are about 5 
times faster than SIS, even though all algorithms have been 
generalized. The quality of results (when run on binary 
deterministic examples) is equal to or better than for SIS. 

2 ND Networks 

An ND network is an acyclic directed graph. A node represents 
an ND relation between the node’s inputs and its one output. An 
edge is directed from node i to j if the relation at node j depends 
syntactically on the variable yi, associated with the output of node 
i. The output of node i is multi-valued and takes values from the 
domain {0, , 1}= −Li iD n . 

 Primary inputs (PI) are nodes with no inputs. Primary output 
nodes (PO) deliver the functionality of the network to its 
environment. Single input and output storage element nodes have 
the next state (NS) variables as inputs, and the present state (PS) 
variables as outputs. Since this paper is concerned only with the 
combinational portion of the network, the set (PI, PS) is called the 
combinational inputs (CI) and represented by the vector X, and the 
set (PO, NS) is called the combinational outputs (CO) and 
represented by the vector Z. 

An external specification of a network, ( , )specR X Z , is the set of 
all acceptable (CI, CO) minterm pairs, ( , )X Zm m , such that 

( , ) 1=spec
X ZR m m  if and only if the pair ( , )X Zm m  is allowed.  

Definition: A relation ( , )R X Z  is well-defined if for each input 
minterm, there exists at least one allowed output minterm in the 
relation: ( ( , ) 1)X Z R X Z∀ ∃ = .  

Definition: Let . ( , )R X Z  is output-symmetric if for any Xm , 

1 ( ) ( ) ( , ) ( , )Z X m X X Zm S m S m m m R X Z∈ × × ⇒ ∈L , 

where  , 1 1( ) { | ( , , , , , , ) 1}
ji X z j i X i NS m v R m z z v z≠ −≡ ∃ =L L . 

Example. Consider a network with two binary outputs, z1 
and z2. Suppose, for some minterm, the values that the 
outputs can take are {00, 01}. The relation R(X, Z) is 
output-symmetric for this minterm, because S1={0}, 
S2={0,1}, and every combination from the product set 
{0}×{0,1}={00, 01} belongs to the relation. If the same 
outputs were to take values {00, 01, 11} for this minterm, 

it would not be output-symmetric because S1 ={0,1}, S2 

={0,1}, and there exists a combination {10} in product set, 
{0,1}×{0,1}={00, 01, 10, 11}, which does not belong to 
the relation. 

Output symmetry has been used to define “compatible” external 
don’t cares in binary networks. The primarily reason its use is that 
the choice of value made at one output is independent of the choice 
made at any other output. For a general relation, a choice made at 
one output, can restrict the choices allowed at another output, and 
this makes it much harder to deal with. 

An ND relation giving the functionality of a node in a network 
can be specified by the characteristic function relating the inputs 
and output of the node. The relation at a node j in the network is 
denoted ( , )j j jR Y y  where jY  is the set of fanin variables, and jy  

is the single output variable of the node. For ease of notation, 
sometimes the arguments of a relation will be used to identify it, 
e.g. ( , )jR X Y  and ( , )j jR Y y  denote different relations even though 

each is named R.  

A relation with a single output is often stored as a set of 
deterministic multi-valued input, binary output functions, the ith of 
which is 1 for those fanin minterms that can produce value i at the 
output. These are called the i-sets of the relation and each can be 
represented in SOP (MV) form or as a MDD. Binary-output, 
MV-input functions can be minimized using a program like 
Espresso-MV [2][7], resulting  in a minimized MV sum-of-
products (MVSOP) expression. A product term in an MVSOP is 
the conjunction of MV-literals. An MV-literal of a variable y, for 
example, Sy , is the binary function, which is 1 if and only if y has 
a value in the set of values S. 

A smaller MVSOP representation of the relation can be obtained 
by designating one of the i-sets as a default, which is defined as the 
complement of the other i-sets.1 For binary relations, any overlap 
between the 0-set and the 1-set is called a don’t care set, which is 
typically represented as a separate binary function. In a Boolean 
network, the 0-set is usually taken as the default and don’t cares 
are derived from the network structure (SDCs and ODCs). 

The notation ( , )specR X Z  will be used to represent the 
specification of the network. An output symmetric specification 
has the advantage that it can be represented by a set of individual 
single-output relations, one for each CO, i.e. 

( , ), 1, ,spec
iR X z i N= L .  

In the next section, we define three types of simulations for an 
ND network, {NS, NSC, SS}, all of which are the same as the 
usual notion of simulation when the network is deterministic.  

Definition: The B-behavior of an ND network is the set of all 
CI/CO pairs that can be simulated using the simulation of type 

                                                                 
1 Note that a general ND relation cannot be fully represented this 

way because there may be no i-set that is disjoint from the union of 
the others.  



, { , , }B B NS NSC SS∈ . The B-behavior of a network is denoted as 

( , )BR X Z . 

Definition: An ND network B-conforms to, or B-complies with, 
its external specification if  ( , ) ( , )B specR X Z R X Z⊆ .  

3 Behaviors of ND Networks 

Each interpretation of the behaviors to be defined for an ND 
network is associated with a particular type of simulation model. 
We define three, all of which yield the same behavior if the 
network is deterministic. The interpretations to be defined are 
listed in the order of increasing amount of behavior: 

1. Normal simulation (NS-behavior). 

2. Normal simulation made compatible (output-symmetric) for 
all outputs (NSC-behavior).  

3. Set simulation (SS-behavior). 

We define each of the simulation models and discuss their relative 
merits. In most applications, it is usually appropriate to view NS 
as the “real” behavior, and the others as easier-to-compute over-
approximations. 

In manipulating a network, it is important to use only one 
interpretation of a network’s behavior consistently. This is 
because in some operations, a network’s behavior is periodically 
compared with its external specification. Changes are allowed 
provided they do not cause an increase beyond the specification. 
Since an ND network can satisfy its specification under one 
interpretation but not another, switching between different 
interpretations could lead to a final network that does not conform 
to its external specification. 

3.1 Behavior by Normal Simulation (NS) 

NS is the most intuitive type of simulation of an ND network. 
Proceeding in topological order, each ND node non-
deterministically selects one output value allowed by the current 
fanin minterm, and transmits this value to all of its fanouts. For 
this type of simulation, it is easy to obtain single pairs ( , )X Zm m  

of (CI, CO) minterms of the behavior. However, it is difficult to 
obtain all pairs, which is most often required; in fact, of the three 
methods, NS is the most computationally complex.  

The complete NS-behavior can be obtained by the following 
computation, 

 
 internal nodes

( , ) ( , )
i

NS
j j jy

j

R X Z R Y y
∈

= ∃ ∏  (3.1) 

A pair ( , )X Zm m  is in the MV multi-output relation ( , )NSR X Z  

precisely if mX is given at the CI, and at each node there exists a 
choice  that is propagated to its fanouts, such that finally the 
vector Zm  appears at the COs.  

A more efficient method for computing ( , )NSR X Z  is to use 
“early” quantification of a conjunctive relation as it is done in some 
formal verification applications. Even so, this computation is still 

problematic since, in general, there is one final relation, which must 
relate all CIs with all COs. In contrast, the other two types of 
behaviors to be discussed can be represented by N independent 
relations, each relating CI vectors, Xm , with one CO, 

, {1, , }∈ Lkz k N . In these cases, the set of CO vectors related to 

Xm  is the cross product of the sets of values at the individual COs 

related to Xm . Thus, these two behaviors produce output-

symmetric relations. 

3.2 Behavior by NS made Compatible (NSC) 

 In NSC, each CO is simulated independently with NS, obtaining 
a set of relations: 

( , ), 1, , .NSC
kR X z k N= K  

Thus 
1

( , ) ( , )
NNSC NSC

kk
R X Z R X z

=
≡ ∏  is output-symmetric (the 

set { ( , )}NSC
kR X z  is compatible). This increases the behavior over 

NS since each node that has more than one CO in its TFO is 
treated independently in each of the simulations for the different 
COs. This is called NSC-behavior, since it represents the 
operation of making the NS-behavior compatible. If each ND node 
has only one CO in its TFO, then NS and NSC are the same. 

 Collapsing denotes the process of eliminating2 all the internal 
nodes in a network, one by one, in some unspecified order. After a 
network is collapsed, only the output nodes remain and their 
relations will depend only on the CI variables, X. 

Theorem 3.1: The NSC-behavior is equivalent to collapsing the 
network in reverse topological order. 

It is easy to show that collapsing in reverse topological order 
yields the smallest set of output-symmetric relations which 
contains the NS behavior of the network. In this sense, it is the 
smallest easy-to-compute output-symmetric over-approximation 
of the NS behavior. 

The following is a useful observation.  

Theorem 3.2: The NS and NSC behaviors of a network are not 
changed by eliminating any deterministic node. 

Thus for a deterministic network, the order of elimination during 
collapsing is not important. 

3.3 Behavior by Set Simulation (SS) 

Set simulation is performed as follows. Given a minterm Xm , 

each CI has a single value (singleton set). However, in general, an 
internal node can have a subset of the allowed values for that node. 
The simulation proceeds in a topological order. When a node is to 
be simulated, each of its fanins has been assigned a set of values. 
The node’s output is the set of all values possible for that node 
given its fanin sets; each fanin minterm can be taken from the 

                                                                 
2 A more detailed discussion of the elimination operation can be 

found in Section 5. 



product set of the fanin sets. For example, suppose each input has 
a set of values, 

ki
S . The output of a node i is evaluated as the 

following set:3 

 
1 2 | |

{ | ( , ) 1, }
Yi

i i i i i i iS v R V v V S S S= = ∈ × × ×L . 

Each fanout edge i j→  then receives the set iS . When all CO 

nodes have been computed, the cross product of the CO output 
sets forms the set of minterms { Zm } allowed for Xm . Any such a 

pair ( , )X Zm m  is in the SS-behavior of the network4, i.e.  

( , ) ( , )SS
X Zm m R X Z∈ . 

It is easy to observe that the SS-behavior is an output-
symmetric relation and, hence, can be represented by a set of 
independent relations, one for each output. Similar to NSC, a key 
advantage of SS is that the network can be manipulated as a 
network of single-output MV nodes. In contrast, the use of NS-
behavior would lead to multi-output nodes and MV multi-output 
relations at these nodes (see [5]). 

SS-behavior can be shown to be the same as considering the ND 
network as a set of deterministic binary nodes, one for each i-set of 
each MV node. For example, consider a ternary node j. The i-sets 
of this node (0-set, 1-set, and 2-set) are represented by MV-input 
binary-output functions. In this binary interpretation, each internal 
MV signal and each CO is replaced by a set of binary signals and 
each corresponding literal in any MVSOP is converted to a sum of 
binary literals, e.g. {1,3,5}

1 3 5= + +y y yy b b b , where y
jb  is the binary 

output of the jth i-set of y. The resulting network is deterministic 
and can be manipulated like any such network5. Basically, this 
conversion is like representing MV signals using positional 
notation which allows for the representation of sets. The only 
signals that are multi-valued are the CIs, which do not have to be 
converted since they only carry singleton sets. 

Theorem 3.3: The SS-behavior of an ND network can be 
obtained by treating each i-set as a separate binary function, 
collapsing the network (in any order), and merging each set of 
binary outputs associated with a CO to form the i-sets of that MV 
output. 

Another method for computing the SS-behavior is the following. 

Theorem 3.4: The SS-behavior of an ND network is exactly that 
obtained by eliminating all internal nodes in topological order. 

The same effect can be obtained by unfolding the network into a 
tree (using duplication), resulting in a network where each node has 
exactly one fanout. It turns out that the SS-behavior is unchanged. 
An ND node in this tree has a unique path to one CO, so the effect 

                                                                 
3 Note that even if the node relation is deterministic, the output set 

can have more that one element if some of the inputs are sets with 
more than one value. 

4 Set simulation is similar to what is done in ternary simulation 
when values 0,1,X are propagated. X stands for the set  {0,1}.  
5  In fact, the network is unate. 

that an ND node in the original network can have on the SS-
behavior is directly related to the set of all paths from the node to 
a CO. Each time the output of an ND node branches to several 
fanouts, the effect is as if independent “copies” are made of the 
ND node are made. As discussed in subsequent sections, any 
network operation that increases (decreases) the number of paths 
from an ND node to a CO can increase (decrease) the SS-behavior 
of the network. 

3.4 Comparison and Representation of 
Behaviors  

A network’s external specification gives the upper bound on the 
allowed network behavior. The specification can be output-
symmetric (independent relation for each output) or a Boolean 
relation relating all outputs. An output-symmetric specification is 
analogous to giving compatible external don’t cares for a binary 
network. Operations on an ND network can change its B-behavior, 

{ , , }B NS NSC SS∈ . An increase in behavior is allowed only if it is 
still contained in the specification.  

Output -symmetric specifications have the advantage that they 
can be stored individually for each output, e.g. as a set of binary-
output i-set functions. Other specifications may require a single 
global multi-output relation, relating all inputs and outputs, which 
can easily become too large. If the specification is not output-
symmetric, one option is to under-approximate it with an output 
symmetric one; this leads to a correct but conservative approach. 

The node minimization operation (as discussed in Section 4) 
uses the external specification directly to test how much a node’s 
behavior (any of the B-behaviors) can be increased without 
violating the specification. In Section 4, an ND relation at a node is 
computed to describe the maximum flexibility (complete flexibility 
CF) allowed in implementing the node. Different interpretations of 
a network’s behavior will lead to different flexibilities (B-CFs) 
allowed. Node minimization is the process of solving for a well-
defined sub-relation of the B-CF, which gives the smallest 
representation of the node [4]. Using an ND sub-relation of the B-
CF allows for smaller representations.6  

Another aspect is the ease of performing network manipulations 
using the different behaviors. SS-behavior is the most efficient 
because it is related to collapsing the network in topological order. 
This allows building global MDDs of each node, where only CI 
variables are needed at any stage in the collapsing process. NSC is 
also relatively easy because collapsing in reverse topological order 
can be used, but building global MDDs is slightly more difficult 
since internal variables (but only those representing the outputs of 
ND nodes) must be used temporarily in the MDDs. NS-behavior 
requires either the use of multi-output relations or input 
determinization using pseudo-inputs. 

                                                                 
6 A minimum deterministic sub-relation can never be smaller that a 

minimum ND sub-relation.  



It is obvious that NS behavior is contained in NSC-behavior. 
Also, NSC is a subset of the SS-behavior. One way to see this is 
that in NSC some “copies” of ND relations, which lead to the 
same CO, are kept synchronized (interdependent) during the 
collapsing process. In contrast, with SS, all correlations between 
different fanouts of an ND node are lost when the node is 
eliminated (since elimination is done each fanout at a time). As a 
result, we have, 

 ( , ) ( , ) ( , )⊆ ⊆NS NSC SSR X Z R X Z R X Z . (3.3) 

In Section 4, it is shown that this ordering has the reverse effect on 
the optimization potentials (flexibilities) computed using these 
behaviors, because the computation is based on comparing (by 
containment) against the external specification. For example, if SS-
behavior is used, containment is more restrictive since SS-behavior 
is the largest. Thus the use of SS behavior will lead to less 
flexibility allowed in implementing a node. On the other hand, SS-
behavior is easier to compute with. 

4 Node Flexibilities 

The computation of the complete flexibility, CF, at a node iy  in 

an ND network can be described somewhat generically for the 
different behaviors { , , }B NS NSC SS∈ . However, for each 
behavior, certain modifications need to be done. 

Cut the network at the output of node i and consider the new 
network (the cut network), which has an additional independent 
primary input jy . Require that the B-behavior of the cut network, 

( , , )B
jR X y Z , complies with the network specification 

( , )specR X Z : 

 ( , ) ( ( , , ) ( , ))B B spec
j Z jR X y R X y Z R X Z≡ ∀ ⇒ , (4.1) 

which simply says that for all outputs, the cut-network behavior 
should be contained in the specification. Note that for both NSC 
and SS, the behavior and the specification can be stated in terms of 
the individual outputs, kz , in which case the computation 

becomes  

( , ) ( ( , , ) ( , ))
k

B B spec
k j z j k kR X y R X y z R X z≡ ∀ ⇒          (4.2) 

which makes the computation for { , }B NSC SS∈  much more 
efficient. 

It turns out that  if the flexibility for SS-behavior were computed 
by Equation 4.2, then Theorem 4.2 below, about how it can be 
used, would not hold. We need to modify the computation of 

( , )SS
k jR X y  as follows. When ( , , )SS

j kR X y z  is computed for the 

cut network, it needs to be changed such that it can have set inputs 
at the jy  input node in the cut network, since that is what can 

happen at the output of the jy  node when SS-simulation is done 

on the uncut network. This can be done by introducing new binary 
variables jb , which encode subsets of jD , the domain of jy .  

For example, if {0,1,2}jD = , there would be 3 binary signals 

0 1 2{ , , }j j jb b b  as inputs to a modified cut network (for example, 

(0,1,1) would encode the subset {1,2} {0,1,2}⊂ ). A new node, jη  

is introduced in place of node j. Its inputs are 0 1 2{ , , }j j jb b b  and its 

output jy  fans out to the same nodes as in the original network. 

The node relation at jη  is denoted ( , )set j
jR b y  and serves to 

translate between the binary inputs and the MV set outputs. 
Thus, in the example, (0,1,1,1) and (0,1,1,2) are in the relation 

0 1 2( , , , )set j j j
jR b b b y , and (0,1,1,0) is not.  

Then, ( , , )SS j
kR X b z  is computed for the modified cut network 

and this is used in Equation (4.2) to obtain ( , )SS j
kR X b ,  which 

relates X  to allowed subsets of jD . 

Relations ( , )B
k jR X y  express the Observability Partial Care 

(OPC) for the node at output k, which is related to observability 
don’t cares computed for a node in a binary network. Note that the 
relations depend on the CIs, X.  

 Next we bring in what is analogous to “satisfiability don’t 
cares” (SDC) to derive a local “complete” flexibility (CF). Define 

( , )B
jM X Y  as the relation between CI minterms and vectors of 

values that the fanin variables, jY , of node j can take during B-

simulation of the entire network7. The B-CF is computed by the 
formula 

 
1

( , ) ( ( , ) ( , ))
N

B B B
j j X j k j

k

R Y y M X Y R X y
=

= ∀ ⇒∏ .8 (4.3) 

This simply says that for all input minterms, those fanin 
minterms, 

,Ym , that can be produced by B-simulation must be 

related to the corresponding output values of the global flexibility. 
It can be shown that 

 ( , ) ( , ) ( , )SS NSC NS
j j j j j jR Y y R Y y R Y y⊆ ⊆ . (4.4) 

We claim that each of these is maximal, i.e. no additional pair of 
minterms can be included in any of the relations while maintaining 
a valid flexibility relation. 

                                                                 
7 A subtle point is that in general for NSC, this is not the same as 

the NSC-behavior ( , )NSC
jR X Y  of the cut sub-network whose COs are 

j
Y , but in fact ( , ) ( , )NSC

j
NS

jM X Y R X Y= . Roughly, this is because 

internal nodes and output nodes are treated differently in ND 
networks. This makes it more difficult to compute. 

8 For NS, there is no product over all outputs since ( , )NS
jR X y  

takes all outputs into account. For SS, we obtain ( , )SS j
jR Y b  which is 

a (multiple output) Boolean relation. In general, to convert this to an 
ND multi-valued relation (single output), we need to choose, for each 

jYm , one of the allowed sets as indicated by jb . For a given 
jYm , 

there may be several such sets.  



In general, the CFs, ( , ) for { , , }B
j jR Y y B NS NSC SS∈ , are non-

deterministic relations. Since the current relation at node j, 
( , )j jR Y y , is well defined and ( , ) ( , )B

j j j j jR Y y R Y y⊆ , then also 

( , )B
j jR Y y  is well-defined (assuming that the current network 

conforms to the specifications).  

Theorem 4.1: The B-CF for node j is well-defined if and only if 
there exists a relation for node j such that the resulting network B-
conforms , ( )

iz iz TFO j∀ ∈ . 

By B-conforms , ( )
iz iz TFO j∀ ∈  we mean that the containment of 

relations (behavior is in the spec.) holds for those outputs in the 
TFO of node j. However, conflicts are possible at the outputs not 
in TFO(j). The importance of Theorem 4.1 is that the CF can tell 
us if it is possible to correct the network to meet its specifications 
at the TFO(j) by changing the relation at node j only. The main 
import of the CF is the following. 

Theorem 4.2: If any well-defined ND sub-relation contained in 
( , )B

j jR Y y  is inserted at node j, then the new network, °N , is B-

compliant, i.e. ° ( , ) ( , )
B specR X Z R X Z⊆ , at least for those outputs in 

the TFO(j). 

It could be that the initial network is not compliant. Then the 
use of a well-defined sub-relation can only correct those outputs 
that it can influence. If the initial network is compliant, then it 
remains so after using any well-defined sub-relation contained in 
its CF. In practice, one wants to find the well-defined sub-relation 
with the smallest representation. This is normally measured in 
terms of the total number of cubes in the non-default i-sets. In [4], 
a Quine-McCluskey type algorithm is given for finding a sub-
relation with the exact minimum number of cubes. Generally, the 
solution is ND.  The corresponding problem for finding an 
optimum deterministic sub-relation is not solved. 

5 Elimination 

Elimination is the process of substituting the relation of a node 
into all the relations of its fanouts. Substitution of the relation at 
node k into a fanout i is defined as replacing relation ( , )k k kR Y y  

with ( , ) ( , )∃
iy i i i k k kR Y y R Y y 9. After Ri has been substituted into all 

its fanouts, it can be removed (eliminated) from the network, since 

iy  is no longer used anywhere. The impact of eliminating a node 

on the behavior of the resulting network is summarized below. 

Theorem 5.1: Eliminating a node can increase the NS and NSC 
behaviors of a network only if the node being eliminated is ND and 
has more than one fanout. 

Theorem 5.2: Eliminating a node can increase a network’s NSC 
behavior if and only if the node is ND and has reconvergent fanout. 

                                                                 
9  i ky Y∈ since k is a fanout of i. 

Theorem 5.3: Eliminating a node cannot increase the SS-
behavior of the network. 

The original reason for considering SS-behavior was that 
elimination effectively substitutes a copy of the eliminated node 
into each fanout. Each copy acts independently of the other copies 
and effectively broadcasts an independent set of values to its 
fanout. Since SS effectively does the same thing, elimination can 
not increase the SS-behavior of a network. However, elimination 
can decrease the SS-behavior if the nodes are not eliminated in 
topological order (the number of paths to an output can decrease in 
this case).  

6 Extraction and Decomposition 

Extraction and decomposition are similar; the latter operates on a 
single node at a time, while the former operates on a set of nodes. 
With decomposition, a new node (divisor) is created, which has 
only a single fanout; with extraction there are two or more fanouts. 
The objective is the same, to find a good divisor. There are two 
forms of extraction/decomposition, disjoint and non-disjoint. It is 
disjoint if the fanins of the new node are not fanins of its fanouts. 

Theorem 6.1: Extraction and decomposition cannot increase the 
NS and NSC behaviors of an ND network. 

Theorem 6.2. The SS-behavior of a network is not changed if, in 
a node decomposition/extraction, the non-disjoint variables have 
no ND nodes in their TFIs. 

The SS-behavior is related to the number of paths from an ND 
node to the outputs. A non-disjoint decomposition can increase 
this number. As an example, consider the network in Figure 2. 

 
Figure 2. Non-disjoint decomposition of B 

The decomposition of B is non-disjoint because the inputs of C are 
not disjoint from the inputs of B’. Thus the number of paths from 
A to B has increased. If A is non-deterministic or there is an ND 
node in TFI(A), then the SS-behavior could increase. 

7 Merging 

Merging is the process of combining two or more nodes (the 
merging set) into a single node with more values [6]. A constraint 
on the merging set is that the network should remain acyclic. The i-
sets of the new node are composed of intersections of the i-sets of 
the set of nodes being merged.  
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Example: Consider the merging of two nodes with value 
ranges 3 and 5, respectively. Then, the 0-set of the new 
node is the intersection of the 0-sets of the two relations, 
the 1-set is the intersection of the 0-set and the 1-set, the 
2-set the intersection of the 0-set and 2-set, etc, and the 
14-set the intersection of the 2-set and the 4-set.  

The second step of merging involves substituting the new node 
into the union of the fanouts of the merging set by replacing literals 
of the merging set of each cube in the i-set covers of a fanout by a 
single literal of the new variable.  

Example: In the above example, if a fanout cube in some i-
set involves the product {0,2} {1,3,4}x y  (x and y form the 
merging set and are three-valued and five-valued MV 
variables, respectively), this product is replaced by the 
single literal of the new 15-valued variable, say z, 

{1,3,4,11,13,14}z . A cube with the literal {1}x  but no y is 
replaced by {5,6,7,8,9}z since the absence of a literal of y 
implies all (five) values of y. 

Thus, the number of i-set cubes in the fanouts cannot increase, 
but most likely will decrease (which is one point in doing a merge) 
after the resulting i-sets are made prime and irredundant. 

Example: An example of the reduction is given by the 
binary XOR gate with inputs x and y: {0} {1} {1} {0}+x y x y . 
It has two cubes and four literals. If x and y are merged into 
a single node z, the MV-SOP of the gate becomes 

{1} {2}z z+ , which, when made prime and irredundant, 
becomes one cube and one literal, z{1,2}. 

Theorem 7.1. Merging of nodes cannot change the NS or NSC 
behaviors and cannot increase the SS behavior of the network. 

Merging can decrease the SS-behavior since the number of paths to 
an output may decrease. 

8 Comparing NSC and SS 

Since NSC and SS behaviors are computationally easier than NS, 
they are the likely candidates for implementation. Comparison 
leads to the following statements. 

1. Both lead to output-symmetric relations at the COs. 
This allows the handling of each CO separately. 

2. The computational process for SS is made easier since 
collapsing in topological order allows for building global 
MDDs using only the CI variables. However, it is made 
slightly more difficult by the need to handle sets at the 
cut variable. Since NSC is computed in reverse 
topological order, intermediate variables at the ND nodes 
must be part of the computation. We found that this 
makes it much more difficult to compute. 

3. Both lead to network operations, similar to those for 
binary networks, allowing operations on single nodes 
and creating only single output nodes. 

4. One operation in each case can increase behavior. It has 
been characterized when this happens and, in both cases, 
the operations can be easily modified to ensure that the 
behavior can’t increase. The problematic operation is 
elimination for NSC and is extraction for SS. 

5. NSC can provide more flexibility at a node, but from 
experiments, the improvement is only about 1%. 

The theory based on SS-behavior was the one implemented 
initially in MVSIS, being the most computationally efficient. NSC 
implementation has just been completed. 

Table 1 summarizes the comparison between NSC behavior and 
SS-behavior in terms of possible changes of the network behavior 
after the corresponding operation. An increase in behavior could 
cause non-compliance. 

 

Operation SS-behavior NSC-behavior 

elimination can’t increase may increase  

(see Theorem 
5.2) 

extraction may increase 

(see Theorem 6.2) 

can’t increase 

node 
minimization 

can’t increase can’t increase 

node flexibility less more 

merging can’t increase can’t change 

Table 1. Comparing two computationally viable theories. 

9 Hierarchical Theory 

An interesting question is what type of simulation has been 
assumed if the specification is given by the initial ND network10. 
This occurs in the following situations:  

1) Network N  has been cut out of a larger network, µN , and 

N  acts as its own specification. This might happen if µN  
is so large that optimization algorithms cannot be applied to 
it. Thus, sub-networks N  are cut out; their inputs and 
outputs are treated as PIs and POs. No external don’t cares 
are given for N  because these would have to be derived 

from µN . The objective is to re-synthesize N to obtain a 
smaller sub-network whose behavior is contained in N . 

The result is then stitched back into µN . It is important to 
guarantee that the network containing the optimized sub-

network still satisfies the specifications for µN , because it 
is time consuming to check containment after each step. 

                                                                 
10 If the specified network is deterministic, this question does not 

arise. 



2) A sub-network N  is cut out of a larger network, but its 
contents are ignored. The specification N  is derived only 

from the surrounding environment of N  in µN  and the 
specification. This is similar to computing the CFs, except 
that, in general, the cut-out sub-network may have several 
outputs. 

The second type of optimization in a hierarchical theory is 
problematic, since a type of CF would need to be derived for 
multiple output nodes. This is similar to what has been done for 
deterministic binary networks [1] in terms of Boolean relations. 
We leave this type of optimization for another paper.  

For the first type, we can state the following results: 

1. If the NS-behavior of N  is not increased, then the NS-

behavior µN  is not increased.  

2. For NSC, a small modification needs to be done in treating 
groups of outputs (those that have paths to the same output 

in µN )  of N  as dependent.  

3. To guarantee compliance for SS-behaviors, the inputs of the 
carved-out network N  should be considered as general set 
inputs, rather than singleton-set inputs as it is done in the 
case of NS and NSC. This modification is similar to the 
change in the computation of flexibility using SS-behavior, 
discussed in Section 4, where set inputs were required. 

Hence, under these modifications, if the original network µN  has 
its {NS, NSC, SS}-behavior is contained in the specification, then 
the modified network containing the modified carved network 
would also {NS, NSC, SS}-conform. Thus {NS, NSC, SS}-
behaviors can be made suitable for sub-network optimization. This 
observation is important since it allows for partitioning a large 
network, optimizing the sub-parts separately, and composing the 
results, leading to a valid modified network.  

10 Modifying Two Network Operations 

In Table 1, two operations are problematic. one for NSC and one 
for SS. These need to be modified to ensure that the network 
behavior is not increased to possibly make it non-conform. 

The only network operation that could cause the NSC-behavior 
to increase is elimination, and then only if an ND node with 
reconvergent fanout is eliminated. Thus, the following modification 
to the elimination operation can be made when NSC behavior is 
used.  

Check a node to be eliminated for being both ND and having 
reconvergent fanout; if both conditions hold, then the node 
relation is determinized (replaced by a well-defined 
deterministic sub-relation) before elimination.  

Since all other network eliminations can’t increase the NSC 
behavior, the ND network can never get out of NSC-compliance if 
this modification is used. 

For SS, the only operation that could cause non-compliance is 
extraction/decomposition. By Theorem 6.2, this can happen only 
if there is a non-disjoint variable in the decomposition with an ND 
node in its TFI. The following modification can be made. 

During extraction, check the new divisor for inputs that are not 
disjoint. If found, then either determinize all ND nodes in the TFI 
of this divisor, or look for another divisor. 

Additionally, one could accept the new divisor and then check 
its SS-CF. If it is well defined, then according to Theorem 4.1, the 
divisor can be modified to correct this non-conformance. 

11 Experimental Results 

We compared the amount of flexibility obtained by using  NSC 
versus SS. Ten benchmarks were selected that were multi-level and 
had multi-valued variables.  

 Statistics 
Name I/O N Nnd Rec ND, % 

4ac 9/8 48 20 0.25 10.39 
bpds 12/6 79 23 0.29 10.97 

cc 15/10 97 68 0.17 12.91 
comp 4/2 11 6 0.00 16.12 

ep 7/4 32 27 0.03 12.93 
sort  8/8 25 20 15.36 9.89 

9sym 9/1 230 97 0.30 8.15 
clip 9/5 333 125 0.40 7.31 

cordic 23/2 68 35 0.10 11.30 
c432 36/7 117 44 4.05 9.78 

Aver.     10.97 

Table 2: Statistics of benchmark examples. 
These benchmarks were modified by inserting at each node about 

10% more non-determinism than originally present. The average 
amount of non-determinism per node is shown in Column 6 of 
Table 2, where N is the number of nodes, Nnd the number of ND 
nodes, and Rec the average number of reconvergent paths per node. 

 
 Behavior Flexibility 

Name SS, % NSC, % NS, % SS, % NS, % 
4ac 1.39 1.29 1.04 45.74 47.30 

bpds 4.53 4.53 4.22 72.59 72.59 
cc 0.54 0.53 0.49 64.40 64.46 

comp 100.00 100.00 85.41 100.00 100.00 
ep 20.83 20.83 20.83 81.76 81.76 

sort  1.08 1.07 0.62 54.92 57.13 
9sym 57.61 57.61 57.61 87.12 87.12 

clip 41.58 41.58 41.58 84.23 84.31 
cordic 45.63 45.63 44.71 84.74 84.74 
c432 46.28 44.83 16.95 54.21 54.64 

Aver. 31.94 31.79 27.34 72.97 73.40 

Table 3: Comparison of NSC and SS flexibilities. 

The amount of global non-determinism was computed for the 
three behaviors for the resulting network shown in Columns 2, 3, 
and 4 of Table 3. The SS behavior was taken as the external 



specification, and was used in calculating the average, over all 
nodes, of the amount of non-determinism in the resulting NSC and 
SS flexibilities. These are shown in Columns 5 and 6 of Table 3. 

12 Conclusions 

A theory of non-deterministic networks has been developed and 
implemented to merge the two concepts of multi-level networks 
and non-determinism. Space limitations allowed for only stating 
the results of this investigation. For a more complete 
understanding, it is necessary to refer to [5].  

The legality of various classical network manipulations was 
analyzed under three different definitions of behavior, which 
correspond to three methods of simulation: normal (NS), normal 
compatible (NSC), and set simulation (SS). SS is the same as that 
obtained by eliminating all internal nodes in the network in 
topological order and NSC is equivalent to elimination in reverse 
topological order. It was shown that NS NSC SS⊆ ⊆ . 

For { , , }B NS NSC SS∈ , algorithms were given to compute 
corresponding complete flexibilities (B-CFs) at a node. It is claimed 
that these flexibilities are maximum, and all have the property that 
any well-defined sub-relation contained in them maintains 
compliance.  

Two operations could cause non-compliance when non-
determinism is present; extraction is problematic for SS, while 
elimination is problematic for NSC. However, easy specific 
modifications were given, which alter the way extraction or 
elimination is performed in those cases where some non-
determinism is related to the node under operation. 

The use of NS behavior seems too computationally expensive 
for larger circuits since it is equivalent to computing a Boolean 
relation for the entire network. In contrast, NSC and SS behaviors 
have reasonable computational costs (as verified by our current 
implementations), since they can be formulated in terms of a 
relation at each of the separate outputs. All behaviors can be fit 
into a hierarchical theory, which can handle very large networks.   

The manipulation of ND networks using SS-behavior was 
implemented in the second generation of the MVSIS system [6]. 
Recently, NSC behavior has been implemented in MVSIS. The 
experimental results show that the flexibility computed using both 
types of behavior are significantly larger than the amount of non-
determinism present at the node (73% vs. 10%). The additional 
flexibility can improve the quality of the optimization algorithms. 

Surprisingly, experimental results indicate that NSC yields only 
about 1% more flexibility than for SS. Since we also found that 
computing NSC flexibility was much more difficult that we first 
thought, we conclude that the use of the more efficient 
computation (SS) does not loose much in flexibility.   

Initial experience with modification of those operations that 
could cause the network to become non-compliant, show that it is 
easy to modify these on-the-fly. Efficiency of handling ND 
networks is on a par with the manipulation of comparable 

deterministic binary networks; thus the penalty for including the 
generalizations to multi-valued non-deterministic nodes is small11.  

A near-term future goal is to experiment with enhancing the well-
known binary operations by allowing various optimization 
algorithms to search in a larger (MV) space. A longer-range goal is 
to open up, to many applications, the possibility of manipulating 
non-deterministic problems. For example, we can use ND network 
manipulations to operate on ND regular automata by developing 
efficient operations of complementation and composition. These 
could be applied directly to multi-level network representations of 
the automata yielding possible improvements in efficiency over 
existing techniques. Many applications, such as protocol 
synthesis, cryptography, discrete control problems, solving games 
etc., could benefit from this capability. 
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