

 A Theory of Non-Deterministic Networks

Alan Mishchenko and Robert K. Brayton
Department of EECS, University of California at Berkeley

{alanmi, brayton}@eecs.berkeley.edu

Abstract

Both non-determinism and multi-level networks compactly
characterize the flexibility allowed in implementing a circuit.
A theory for representing and manipulating non-deterministic (ND)
multi-level networks is developed. The theory supports all the
network manipulations commonly applied to deterministic binary
networks, such as node minimization, elimination, and
decomposition. It is shown that an ND network’s behavior can be
interpreted in three ways, all of which coincide when the network is
deterministic. Operations performed on an ND network are
analyzed under each interpretation for changes in a network’s
behavior. Modifications of a few operations are given which must
be used to guarantee that a network’s behavior does not violate its
external specification. These modifications depend on which
behavior is being used and the location of related non-determinism.
This theory has been implemented in a system, MVSIS. We provide
comparisons among the uses of the various behaviors.

1 Introduction

A non-deterministic (ND) network is similar to a Boolean
network, except that, in general, each node has a multi-valued
(MV) output and is represented by a non-deterministic relation.
The familiar don’t cares used in logic synthesis are a special form
of non-determinism. For example, don’t cares specify for some
input minterms, the output can take any of the values in its range,
while more generally, non-determinism occurs when, for an input
minterm, the output can take values from a subset of values in the
range of the output.

Non-determinism arises naturally in a synthesis setting. For
example, a system’s specification may be given by an ND network
or automaton. Part of the system may be given also. To be
synthesized is an unknown sub-component. The set of all possible
behaviors for the unknown can be derived as an ND relation or ND
automaton, using complementation and composition operations 0.

In logic synthesis, an initial network representation can be given
with “compatible” don’t cares at the primary outputs. Some RTLs
allow incomplete behavior to be specified at internal nodes. This is
interpreted as don’t care, i.e. for the unspecified inputs, the output
can take any value allowed for the variable. Don’t cares can also be
derived from a network’s functionality in terms of observability
(ODC) and satisfiability (SDC) don’t cares. Generalization of
these concepts to MV networks leads to the more general notion
of non-determinism.

Starting from the initial specification, synthesis consists of
operating on a Boolean network to obtain a smaller, faster, more

efficient one, which finally is mapped into a set of logic gates for
implementation in hardware. When these operations are
generalized to account for non-determinism, an analogous network
and set of operations is desired. The use of such networks can lead
to final more efficient deterministic binary implementations, since
the generalization to MV ND networks allows a larger space for
optimization algorithms to explore [3].

We define three network simulation models (SS, NS, NSC) for
ND networks, which lead to three types of network “behaviors”.
A behavior is defined to be the set of all primary-input primary-
output pairs of vectors that can be simulated for the network. All
three newly defined behaviors reduce to the same unique behavior
if the network is deterministic. In the binary case, one of these
simulation models (SS) is analogous to ternary simulation with the
three values, {0,1,X} [1]. We analyze how the corresponding ND
network behaviors can change under various common network
operations, such as decompose, substitute, eliminate, collapse,
node minimize, and merge [8]. It was found that some of the
classical operations need to be modified to account for the effects
of non-determinism. We also study the limits (flexibility), within
which the functionality of a node in an ND network can be
changed without violating the external specification. For all
behaviors, we derive a formula for computing the complete
(maximum) flexibility (CF) allowed at the node.

The paper is organized as follows. In Section 2, we define an ND
network and give some notation. Section 3 discusses the three
methods for interpreting the behavior of an ND network. In
Section 4, we give for each behavior type, methods for computing
the complete flexibilities (CFs) at a node and show that these
cannot increase any of the respective network behaviors when any
“well-defined” sub-relation of the CF is used to replace the old
relation at the node. Section 5 discusses the node elimination
process, Section 6 extraction and decomposition, and Section 7
merging. In each case, we analyze how the respective operations
can change the three types of network behaviors. Section 8
discusses the relative merits of the two computationally more
viable behaviors, NSC and SS. Section 9 discusses how each of
these behaviors can be made to fit into a hierarchical theory where
a network can be partitioned and sub-parts can be optimized
separately. Section 10 discusses modifications on the two
operations (one for NSC and one for SS), which could increase the
corresponding behavior, to ensure that the network always
satisfies its specification. Section 11 discusses some experimental
results which compare the use of the different behaviors in terms
of the relative sizes of the flexibilities allowed. Section 12
concludes, summarizing the contributions and listing some longer-

term goals for the application of this theory and its
implementation.

Because of restricted space, no proofs are given in this paper.
However, all results have been proved and the proofs tested
against a number of readers. For the proofs, please refer to a more
extensive report [5]. In addition, the theory has been implemented
in a system, MVSIS, (http://www-cad.eecs.berkeley.edu/mvsis/)
and experimental results are consistent with the theory. Our
implementation indicates that runtimes penalties incurred for the
generalization to MV and non-determinism are minimal. Because
most algorithms had to be completely re-implemented, we used
this opportunity to improve the efficiency of the algorithms and
data-structures. Experiments indicate that runtimes are about 5
times faster than SIS, even though all algorithms have been
generalized. The quality of results (when run on binary
deterministic examples) is equal to or better than for SIS.

2 ND Networks

An ND network is an acyclic directed graph. A node represents
an ND relation between the node’s inputs and its one output. An
edge is directed from node i to j if the relation at node j depends
syntactically on the variable yi, associated with the output of node
i. The output of node i is multi-valued and takes values from the
domain {0, , 1}= −Li iD n .

 Primary inputs (PI) are nodes with no inputs. Primary output
nodes (PO) deliver the functionality of the network to its
environment. Single input and output storage element nodes have
the next state (NS) variables as inputs, and the present state (PS)
variables as outputs. Since this paper is concerned only with the
combinational portion of the network, the set (PI, PS) is called the
combinational inputs (CI) and represented by the vector X, and the
set (PO, NS) is called the combinational outputs (CO) and
represented by the vector Z.

An external specification of a network, (,)specR X Z , is the set of
all acceptable (CI, CO) minterm pairs, (,)X Zm m , such that

(,) 1=spec
X ZR m m if and only if the pair (,)X Zm m is allowed.

Definition: A relation (,)R X Z is well-defined if for each input
minterm, there exists at least one allowed output minterm in the
relation: ((,) 1)X Z R X Z∀ ∃ = .

Definition: Let . (,)R X Z is output-symmetric if for any Xm ,

1 () () (,) (,)Z X m X X Zm S m S m m m R X Z∈ × × ⇒ ∈L ,

where , 1 1() { | (, , , , , ,) 1}
ji X z j i X i NS m v R m z z v z≠ −≡ ∃ =L L .

Example. Consider a network with two binary outputs, z1
and z2. Suppose, for some minterm, the values that the
outputs can take are {00, 01}. The relation R(X, Z) is
output-symmetric for this minterm, because S1={0},
S2={0,1}, and every combination from the product set
{0}×{0,1}={00, 01} belongs to the relation. If the same
outputs were to take values {00, 01, 11} for this minterm,

it would not be output-symmetric because S1 ={0,1}, S2

={0,1}, and there exists a combination {10} in product set,
{0,1}×{0,1}={00, 01, 10, 11}, which does not belong to
the relation.

Output symmetry has been used to define “compatible” external
don’t cares in binary networks. The primarily reason its use is that
the choice of value made at one output is independent of the choice
made at any other output. For a general relation, a choice made at
one output, can restrict the choices allowed at another output, and
this makes it much harder to deal with.

An ND relation giving the functionality of a node in a network
can be specified by the characteristic function relating the inputs
and output of the node. The relation at a node j in the network is
denoted (,)j j jR Y y where jY is the set of fanin variables, and jy

is the single output variable of the node. For ease of notation,
sometimes the arguments of a relation will be used to identify it,
e.g. (,)jR X Y and (,)j jR Y y denote different relations even though

each is named R.

A relation with a single output is often stored as a set of
deterministic multi-valued input, binary output functions, the ith of
which is 1 for those fanin minterms that can produce value i at the
output. These are called the i-sets of the relation and each can be
represented in SOP (MV) form or as a MDD. Binary-output,
MV-input functions can be minimized using a program like
Espresso-MV [2][7], resulting in a minimized MV sum-of-
products (MVSOP) expression. A product term in an MVSOP is
the conjunction of MV-literals. An MV-literal of a variable y, for
example, Sy , is the binary function, which is 1 if and only if y has
a value in the set of values S.

A smaller MVSOP representation of the relation can be obtained
by designating one of the i-sets as a default, which is defined as the
complement of the other i-sets.1 For binary relations, any overlap
between the 0-set and the 1-set is called a don’t care set, which is
typically represented as a separate binary function. In a Boolean
network, the 0-set is usually taken as the default and don’t cares
are derived from the network structure (SDCs and ODCs).

The notation (,)specR X Z will be used to represent the
specification of the network. An output symmetric specification
has the advantage that it can be represented by a set of individual
single-output relations, one for each CO, i.e.

(,), 1, ,spec
iR X z i N= L .

In the next section, we define three types of simulations for an
ND network, {NS, NSC, SS}, all of which are the same as the
usual notion of simulation when the network is deterministic.

Definition: The B-behavior of an ND network is the set of all
CI/CO pairs that can be simulated using the simulation of type

1 Note that a general ND relation cannot be fully represented this

way because there may be no i-set that is disjoint from the union of
the others.

, { , , }B B NS NSC SS∈ . The B-behavior of a network is denoted as

(,)BR X Z .

Definition: An ND network B-conforms to, or B-complies with,
its external specification if (,) (,)B specR X Z R X Z⊆ .

3 Behaviors of ND Networks

Each interpretation of the behaviors to be defined for an ND
network is associated with a particular type of simulation model.
We define three, all of which yield the same behavior if the
network is deterministic. The interpretations to be defined are
listed in the order of increasing amount of behavior:

1. Normal simulation (NS-behavior).

2. Normal simulation made compatible (output-symmetric) for
all outputs (NSC-behavior).

3. Set simulation (SS-behavior).

We define each of the simulation models and discuss their relative
merits. In most applications, it is usually appropriate to view NS
as the “real” behavior, and the others as easier-to-compute over-
approximations.

In manipulating a network, it is important to use only one
interpretation of a network’s behavior consistently. This is
because in some operations, a network’s behavior is periodically
compared with its external specification. Changes are allowed
provided they do not cause an increase beyond the specification.
Since an ND network can satisfy its specification under one
interpretation but not another, switching between different
interpretations could lead to a final network that does not conform
to its external specification.

3.1 Behavior by Normal Simulation (NS)

NS is the most intuitive type of simulation of an ND network.
Proceeding in topological order, each ND node non-
deterministically selects one output value allowed by the current
fanin minterm, and transmits this value to all of its fanouts. For
this type of simulation, it is easy to obtain single pairs (,)X Zm m

of (CI, CO) minterms of the behavior. However, it is difficult to
obtain all pairs, which is most often required; in fact, of the three
methods, NS is the most computationally complex.

The complete NS-behavior can be obtained by the following
computation,

 internal nodes

(,) (,)
i

NS
j j jy

j

R X Z R Y y
∈

= ∃ ∏ (3.1)

A pair (,)X Zm m is in the MV multi-output relation (,)NSR X Z

precisely if mX is given at the CI, and at each node there exists a
choice that is propagated to its fanouts, such that finally the
vector Zm appears at the COs.

A more efficient method for computing (,)NSR X Z is to use
“early” quantification of a conjunctive relation as it is done in some
formal verification applications. Even so, this computation is still

problematic since, in general, there is one final relation, which must
relate all CIs with all COs. In contrast, the other two types of
behaviors to be discussed can be represented by N independent
relations, each relating CI vectors, Xm , with one CO,

, {1, , }∈ Lkz k N . In these cases, the set of CO vectors related to

Xm is the cross product of the sets of values at the individual COs

related to Xm . Thus, these two behaviors produce output-

symmetric relations.

3.2 Behavior by NS made Compatible (NSC)

 In NSC, each CO is simulated independently with NS, obtaining
a set of relations:

(,), 1, , .NSC
kR X z k N= K

Thus
1

(,) (,)
NNSC NSC

kk
R X Z R X z

=
≡ ∏ is output-symmetric (the

set { (,)}NSC
kR X z is compatible). This increases the behavior over

NS since each node that has more than one CO in its TFO is
treated independently in each of the simulations for the different
COs. This is called NSC-behavior, since it represents the
operation of making the NS-behavior compatible. If each ND node
has only one CO in its TFO, then NS and NSC are the same.

 Collapsing denotes the process of eliminating2 all the internal
nodes in a network, one by one, in some unspecified order. After a
network is collapsed, only the output nodes remain and their
relations will depend only on the CI variables, X.

Theorem 3.1: The NSC-behavior is equivalent to collapsing the
network in reverse topological order.

It is easy to show that collapsing in reverse topological order
yields the smallest set of output-symmetric relations which
contains the NS behavior of the network. In this sense, it is the
smallest easy-to-compute output-symmetric over-approximation
of the NS behavior.

The following is a useful observation.

Theorem 3.2: The NS and NSC behaviors of a network are not
changed by eliminating any deterministic node.

Thus for a deterministic network, the order of elimination during
collapsing is not important.

3.3 Behavior by Set Simulation (SS)

Set simulation is performed as follows. Given a minterm Xm ,

each CI has a single value (singleton set). However, in general, an
internal node can have a subset of the allowed values for that node.
The simulation proceeds in a topological order. When a node is to
be simulated, each of its fanins has been assigned a set of values.
The node’s output is the set of all values possible for that node
given its fanin sets; each fanin minterm can be taken from the

2 A more detailed discussion of the elimination operation can be

found in Section 5.

product set of the fanin sets. For example, suppose each input has
a set of values,

ki
S . The output of a node i is evaluated as the

following set:3

1 2 | |

{ | (,) 1, }
Yi

i i i i i i iS v R V v V S S S= = ∈ × × ×L .

Each fanout edge i j→ then receives the set iS . When all CO

nodes have been computed, the cross product of the CO output
sets forms the set of minterms { Zm } allowed for Xm . Any such a

pair (,)X Zm m is in the SS-behavior of the network4, i.e.

(,) (,)SS
X Zm m R X Z∈ .

It is easy to observe that the SS-behavior is an output-
symmetric relation and, hence, can be represented by a set of
independent relations, one for each output. Similar to NSC, a key
advantage of SS is that the network can be manipulated as a
network of single-output MV nodes. In contrast, the use of NS-
behavior would lead to multi-output nodes and MV multi-output
relations at these nodes (see [5]).

SS-behavior can be shown to be the same as considering the ND
network as a set of deterministic binary nodes, one for each i-set of
each MV node. For example, consider a ternary node j. The i-sets
of this node (0-set, 1-set, and 2-set) are represented by MV-input
binary-output functions. In this binary interpretation, each internal
MV signal and each CO is replaced by a set of binary signals and
each corresponding literal in any MVSOP is converted to a sum of
binary literals, e.g. {1,3,5}

1 3 5= + +y y yy b b b , where y
jb is the binary

output of the jth i-set of y. The resulting network is deterministic
and can be manipulated like any such network5. Basically, this
conversion is like representing MV signals using positional
notation which allows for the representation of sets. The only
signals that are multi-valued are the CIs, which do not have to be
converted since they only carry singleton sets.

Theorem 3.3: The SS-behavior of an ND network can be
obtained by treating each i-set as a separate binary function,
collapsing the network (in any order), and merging each set of
binary outputs associated with a CO to form the i-sets of that MV
output.

Another method for computing the SS-behavior is the following.

Theorem 3.4: The SS-behavior of an ND network is exactly that
obtained by eliminating all internal nodes in topological order.

The same effect can be obtained by unfolding the network into a
tree (using duplication), resulting in a network where each node has
exactly one fanout. It turns out that the SS-behavior is unchanged.
An ND node in this tree has a unique path to one CO, so the effect

3 Note that even if the node relation is deterministic, the output set

can have more that one element if some of the inputs are sets with
more than one value.

4 Set simulation is similar to what is done in ternary simulation
when values 0,1,X are propagated. X stands for the set {0,1}.
5 In fact, the network is unate.

that an ND node in the original network can have on the SS-
behavior is directly related to the set of all paths from the node to
a CO. Each time the output of an ND node branches to several
fanouts, the effect is as if independent “copies” are made of the
ND node are made. As discussed in subsequent sections, any
network operation that increases (decreases) the number of paths
from an ND node to a CO can increase (decrease) the SS-behavior
of the network.

3.4 Comparison and Representation of
Behaviors

A network’s external specification gives the upper bound on the
allowed network behavior. The specification can be output-
symmetric (independent relation for each output) or a Boolean
relation relating all outputs. An output-symmetric specification is
analogous to giving compatible external don’t cares for a binary
network. Operations on an ND network can change its B-behavior,

{ , , }B NS NSC SS∈ . An increase in behavior is allowed only if it is
still contained in the specification.

Output -symmetric specifications have the advantage that they
can be stored individually for each output, e.g. as a set of binary-
output i-set functions. Other specifications may require a single
global multi-output relation, relating all inputs and outputs, which
can easily become too large. If the specification is not output-
symmetric, one option is to under-approximate it with an output
symmetric one; this leads to a correct but conservative approach.

The node minimization operation (as discussed in Section 4)
uses the external specification directly to test how much a node’s
behavior (any of the B-behaviors) can be increased without
violating the specification. In Section 4, an ND relation at a node is
computed to describe the maximum flexibility (complete flexibility
CF) allowed in implementing the node. Different interpretations of
a network’s behavior will lead to different flexibilities (B-CFs)
allowed. Node minimization is the process of solving for a well-
defined sub-relation of the B-CF, which gives the smallest
representation of the node [4]. Using an ND sub-relation of the B-
CF allows for smaller representations.6

Another aspect is the ease of performing network manipulations
using the different behaviors. SS-behavior is the most efficient
because it is related to collapsing the network in topological order.
This allows building global MDDs of each node, where only CI
variables are needed at any stage in the collapsing process. NSC is
also relatively easy because collapsing in reverse topological order
can be used, but building global MDDs is slightly more difficult
since internal variables (but only those representing the outputs of
ND nodes) must be used temporarily in the MDDs. NS-behavior
requires either the use of multi-output relations or input
determinization using pseudo-inputs.

6 A minimum deterministic sub-relation can never be smaller that a

minimum ND sub-relation.

It is obvious that NS behavior is contained in NSC-behavior.
Also, NSC is a subset of the SS-behavior. One way to see this is
that in NSC some “copies” of ND relations, which lead to the
same CO, are kept synchronized (interdependent) during the
collapsing process. In contrast, with SS, all correlations between
different fanouts of an ND node are lost when the node is
eliminated (since elimination is done each fanout at a time). As a
result, we have,

 (,) (,) (,)⊆ ⊆NS NSC SSR X Z R X Z R X Z . (3.3)

In Section 4, it is shown that this ordering has the reverse effect on
the optimization potentials (flexibilities) computed using these
behaviors, because the computation is based on comparing (by
containment) against the external specification. For example, if SS-
behavior is used, containment is more restrictive since SS-behavior
is the largest. Thus the use of SS behavior will lead to less
flexibility allowed in implementing a node. On the other hand, SS-
behavior is easier to compute with.

4 Node Flexibilities

The computation of the complete flexibility, CF, at a node iy in

an ND network can be described somewhat generically for the
different behaviors { , , }B NS NSC SS∈ . However, for each
behavior, certain modifications need to be done.

Cut the network at the output of node i and consider the new
network (the cut network), which has an additional independent
primary input jy . Require that the B-behavior of the cut network,

(, ,)B
jR X y Z , complies with the network specification

(,)specR X Z :

 (,) ((, ,) (,))B B spec
j Z jR X y R X y Z R X Z≡ ∀ ⇒ , (4.1)

which simply says that for all outputs, the cut-network behavior
should be contained in the specification. Note that for both NSC
and SS, the behavior and the specification can be stated in terms of
the individual outputs, kz , in which case the computation

becomes

(,) ((, ,) (,))
k

B B spec
k j z j k kR X y R X y z R X z≡ ∀ ⇒ (4.2)

which makes the computation for { , }B NSC SS∈ much more
efficient.

It turns out that if the flexibility for SS-behavior were computed
by Equation 4.2, then Theorem 4.2 below, about how it can be
used, would not hold. We need to modify the computation of

(,)SS
k jR X y as follows. When (, ,)SS

j kR X y z is computed for the

cut network, it needs to be changed such that it can have set inputs
at the jy input node in the cut network, since that is what can

happen at the output of the jy node when SS-simulation is done

on the uncut network. This can be done by introducing new binary
variables jb , which encode subsets of jD , the domain of jy .

For example, if {0,1,2}jD = , there would be 3 binary signals

0 1 2{ , , }j j jb b b as inputs to a modified cut network (for example,

(0,1,1) would encode the subset {1,2} {0,1,2}⊂). A new node, jη

is introduced in place of node j. Its inputs are 0 1 2{ , , }j j jb b b and its

output jy fans out to the same nodes as in the original network.

The node relation at jη is denoted (,)set j
jR b y and serves to

translate between the binary inputs and the MV set outputs.
Thus, in the example, (0,1,1,1) and (0,1,1,2) are in the relation

0 1 2(, , ,)set j j j
jR b b b y , and (0,1,1,0) is not.

Then, (, ,)SS j
kR X b z is computed for the modified cut network

and this is used in Equation (4.2) to obtain (,)SS j
kR X b , which

relates X to allowed subsets of jD .

Relations (,)B
k jR X y express the Observability Partial Care

(OPC) for the node at output k, which is related to observability
don’t cares computed for a node in a binary network. Note that the
relations depend on the CIs, X.

 Next we bring in what is analogous to “satisfiability don’t
cares” (SDC) to derive a local “complete” flexibility (CF). Define

(,)B
jM X Y as the relation between CI minterms and vectors of

values that the fanin variables, jY , of node j can take during B-

simulation of the entire network7. The B-CF is computed by the
formula

1

(,) ((,) (,))
N

B B B
j j X j k j

k

R Y y M X Y R X y
=

= ∀ ⇒∏ .8 (4.3)

This simply says that for all input minterms, those fanin
minterms,

,Ym , that can be produced by B-simulation must be

related to the corresponding output values of the global flexibility.
It can be shown that

 (,) (,) (,)SS NSC NS
j j j j j jR Y y R Y y R Y y⊆ ⊆ . (4.4)

We claim that each of these is maximal, i.e. no additional pair of
minterms can be included in any of the relations while maintaining
a valid flexibility relation.

7 A subtle point is that in general for NSC, this is not the same as

the NSC-behavior (,)NSC
jR X Y of the cut sub-network whose COs are

j
Y , but in fact (,) (,)NSC

j
NS

jM X Y R X Y= . Roughly, this is because

internal nodes and output nodes are treated differently in ND
networks. This makes it more difficult to compute.

8 For NS, there is no product over all outputs since (,)NS
jR X y

takes all outputs into account. For SS, we obtain (,)SS j
jR Y b which is

a (multiple output) Boolean relation. In general, to convert this to an
ND multi-valued relation (single output), we need to choose, for each

jYm , one of the allowed sets as indicated by jb . For a given
jYm ,

there may be several such sets.

In general, the CFs, (,) for { , , }B
j jR Y y B NS NSC SS∈ , are non-

deterministic relations. Since the current relation at node j,
(,)j jR Y y , is well defined and (,) (,)B

j j j j jR Y y R Y y⊆ , then also

(,)B
j jR Y y is well-defined (assuming that the current network

conforms to the specifications).

Theorem 4.1: The B-CF for node j is well-defined if and only if
there exists a relation for node j such that the resulting network B-
conforms , ()

iz iz TFO j∀ ∈ .

By B-conforms , ()
iz iz TFO j∀ ∈ we mean that the containment of

relations (behavior is in the spec.) holds for those outputs in the
TFO of node j. However, conflicts are possible at the outputs not
in TFO(j). The importance of Theorem 4.1 is that the CF can tell
us if it is possible to correct the network to meet its specifications
at the TFO(j) by changing the relation at node j only. The main
import of the CF is the following.

Theorem 4.2: If any well-defined ND sub-relation contained in
(,)B

j jR Y y is inserted at node j, then the new network, °N , is B-

compliant, i.e. ° (,) (,)
B specR X Z R X Z⊆ , at least for those outputs in

the TFO(j).

It could be that the initial network is not compliant. Then the
use of a well-defined sub-relation can only correct those outputs
that it can influence. If the initial network is compliant, then it
remains so after using any well-defined sub-relation contained in
its CF. In practice, one wants to find the well-defined sub-relation
with the smallest representation. This is normally measured in
terms of the total number of cubes in the non-default i-sets. In [4],
a Quine-McCluskey type algorithm is given for finding a sub-
relation with the exact minimum number of cubes. Generally, the
solution is ND. The corresponding problem for finding an
optimum deterministic sub-relation is not solved.

5 Elimination

Elimination is the process of substituting the relation of a node
into all the relations of its fanouts. Substitution of the relation at
node k into a fanout i is defined as replacing relation (,)k k kR Y y

with (,) (,)∃
iy i i i k k kR Y y R Y y 9. After Ri has been substituted into all

its fanouts, it can be removed (eliminated) from the network, since

iy is no longer used anywhere. The impact of eliminating a node

on the behavior of the resulting network is summarized below.

Theorem 5.1: Eliminating a node can increase the NS and NSC
behaviors of a network only if the node being eliminated is ND and
has more than one fanout.

Theorem 5.2: Eliminating a node can increase a network’s NSC
behavior if and only if the node is ND and has reconvergent fanout.

9 i ky Y∈ since k is a fanout of i.

Theorem 5.3: Eliminating a node cannot increase the SS-
behavior of the network.

The original reason for considering SS-behavior was that
elimination effectively substitutes a copy of the eliminated node
into each fanout. Each copy acts independently of the other copies
and effectively broadcasts an independent set of values to its
fanout. Since SS effectively does the same thing, elimination can
not increase the SS-behavior of a network. However, elimination
can decrease the SS-behavior if the nodes are not eliminated in
topological order (the number of paths to an output can decrease in
this case).

6 Extraction and Decomposition

Extraction and decomposition are similar; the latter operates on a
single node at a time, while the former operates on a set of nodes.
With decomposition, a new node (divisor) is created, which has
only a single fanout; with extraction there are two or more fanouts.
The objective is the same, to find a good divisor. There are two
forms of extraction/decomposition, disjoint and non-disjoint. It is
disjoint if the fanins of the new node are not fanins of its fanouts.

Theorem 6.1: Extraction and decomposition cannot increase the
NS and NSC behaviors of an ND network.

Theorem 6.2. The SS-behavior of a network is not changed if, in
a node decomposition/extraction, the non-disjoint variables have
no ND nodes in their TFIs.

The SS-behavior is related to the number of paths from an ND
node to the outputs. A non-disjoint decomposition can increase
this number. As an example, consider the network in Figure 2.

Figure 2. Non-disjoint decomposition of B

The decomposition of B is non-disjoint because the inputs of C are
not disjoint from the inputs of B’. Thus the number of paths from
A to B has increased. If A is non-deterministic or there is an ND
node in TFI(A), then the SS-behavior could increase.

7 Merging

Merging is the process of combining two or more nodes (the
merging set) into a single node with more values [6]. A constraint
on the merging set is that the network should remain acyclic. The i-
sets of the new node are composed of intersections of the i-sets of
the set of nodes being merged.

B

A

B’

A

C

Example: Consider the merging of two nodes with value
ranges 3 and 5, respectively. Then, the 0-set of the new
node is the intersection of the 0-sets of the two relations,
the 1-set is the intersection of the 0-set and the 1-set, the
2-set the intersection of the 0-set and 2-set, etc, and the
14-set the intersection of the 2-set and the 4-set.

The second step of merging involves substituting the new node
into the union of the fanouts of the merging set by replacing literals
of the merging set of each cube in the i-set covers of a fanout by a
single literal of the new variable.

Example: In the above example, if a fanout cube in some i-
set involves the product {0,2} {1,3,4}x y (x and y form the
merging set and are three-valued and five-valued MV
variables, respectively), this product is replaced by the
single literal of the new 15-valued variable, say z,

{1,3,4,11,13,14}z . A cube with the literal {1}x but no y is
replaced by {5,6,7,8,9}z since the absence of a literal of y
implies all (five) values of y.

Thus, the number of i-set cubes in the fanouts cannot increase,
but most likely will decrease (which is one point in doing a merge)
after the resulting i-sets are made prime and irredundant.

Example: An example of the reduction is given by the
binary XOR gate with inputs x and y: {0} {1} {1} {0}+x y x y .
It has two cubes and four literals. If x and y are merged into
a single node z, the MV-SOP of the gate becomes

{1} {2}z z+ , which, when made prime and irredundant,
becomes one cube and one literal, z{1,2}.

Theorem 7.1. Merging of nodes cannot change the NS or NSC
behaviors and cannot increase the SS behavior of the network.

Merging can decrease the SS-behavior since the number of paths to
an output may decrease.

8 Comparing NSC and SS

Since NSC and SS behaviors are computationally easier than NS,
they are the likely candidates for implementation. Comparison
leads to the following statements.

1. Both lead to output-symmetric relations at the COs.
This allows the handling of each CO separately.

2. The computational process for SS is made easier since
collapsing in topological order allows for building global
MDDs using only the CI variables. However, it is made
slightly more difficult by the need to handle sets at the
cut variable. Since NSC is computed in reverse
topological order, intermediate variables at the ND nodes
must be part of the computation. We found that this
makes it much more difficult to compute.

3. Both lead to network operations, similar to those for
binary networks, allowing operations on single nodes
and creating only single output nodes.

4. One operation in each case can increase behavior. It has
been characterized when this happens and, in both cases,
the operations can be easily modified to ensure that the
behavior can’t increase. The problematic operation is
elimination for NSC and is extraction for SS.

5. NSC can provide more flexibility at a node, but from
experiments, the improvement is only about 1%.

The theory based on SS-behavior was the one implemented
initially in MVSIS, being the most computationally efficient. NSC
implementation has just been completed.

Table 1 summarizes the comparison between NSC behavior and
SS-behavior in terms of possible changes of the network behavior
after the corresponding operation. An increase in behavior could
cause non-compliance.

Operation SS-behavior NSC-behavior

elimination can’t increase may increase

(see Theorem
5.2)

extraction may increase

(see Theorem 6.2)

can’t increase

node
minimization

can’t increase can’t increase

node flexibility less more

merging can’t increase can’t change

Table 1. Comparing two computationally viable theories.

9 Hierarchical Theory

An interesting question is what type of simulation has been
assumed if the specification is given by the initial ND network10.
This occurs in the following situations:

1) Network N has been cut out of a larger network, µN , and

N acts as its own specification. This might happen if µN
is so large that optimization algorithms cannot be applied to
it. Thus, sub-networks N are cut out; their inputs and
outputs are treated as PIs and POs. No external don’t cares
are given for N because these would have to be derived

from µN . The objective is to re-synthesize N to obtain a
smaller sub-network whose behavior is contained in N .

The result is then stitched back into µN . It is important to
guarantee that the network containing the optimized sub-

network still satisfies the specifications for µN , because it
is time consuming to check containment after each step.

10 If the specified network is deterministic, this question does not

arise.

2) A sub-network N is cut out of a larger network, but its
contents are ignored. The specification N is derived only

from the surrounding environment of N in µN and the
specification. This is similar to computing the CFs, except
that, in general, the cut-out sub-network may have several
outputs.

The second type of optimization in a hierarchical theory is
problematic, since a type of CF would need to be derived for
multiple output nodes. This is similar to what has been done for
deterministic binary networks [1] in terms of Boolean relations.
We leave this type of optimization for another paper.

For the first type, we can state the following results:

1. If the NS-behavior of N is not increased, then the NS-

behavior µN is not increased.

2. For NSC, a small modification needs to be done in treating
groups of outputs (those that have paths to the same output

in µN) of N as dependent.

3. To guarantee compliance for SS-behaviors, the inputs of the
carved-out network N should be considered as general set
inputs, rather than singleton-set inputs as it is done in the
case of NS and NSC. This modification is similar to the
change in the computation of flexibility using SS-behavior,
discussed in Section 4, where set inputs were required.

Hence, under these modifications, if the original network µN has
its {NS, NSC, SS}-behavior is contained in the specification, then
the modified network containing the modified carved network
would also {NS, NSC, SS}-conform. Thus {NS, NSC, SS}-
behaviors can be made suitable for sub-network optimization. This
observation is important since it allows for partitioning a large
network, optimizing the sub-parts separately, and composing the
results, leading to a valid modified network.

10 Modifying Two Network Operations

In Table 1, two operations are problematic. one for NSC and one
for SS. These need to be modified to ensure that the network
behavior is not increased to possibly make it non-conform.

The only network operation that could cause the NSC-behavior
to increase is elimination, and then only if an ND node with
reconvergent fanout is eliminated. Thus, the following modification
to the elimination operation can be made when NSC behavior is
used.

Check a node to be eliminated for being both ND and having
reconvergent fanout; if both conditions hold, then the node
relation is determinized (replaced by a well-defined
deterministic sub-relation) before elimination.

Since all other network eliminations can’t increase the NSC
behavior, the ND network can never get out of NSC-compliance if
this modification is used.

For SS, the only operation that could cause non-compliance is
extraction/decomposition. By Theorem 6.2, this can happen only
if there is a non-disjoint variable in the decomposition with an ND
node in its TFI. The following modification can be made.

During extraction, check the new divisor for inputs that are not
disjoint. If found, then either determinize all ND nodes in the TFI
of this divisor, or look for another divisor.

Additionally, one could accept the new divisor and then check
its SS-CF. If it is well defined, then according to Theorem 4.1, the
divisor can be modified to correct this non-conformance.

11 Experimental Results

We compared the amount of flexibility obtained by using NSC
versus SS. Ten benchmarks were selected that were multi-level and
had multi-valued variables.

 Statistics
Name I/O N Nnd Rec ND, %

4ac 9/8 48 20 0.25 10.39
bpds 12/6 79 23 0.29 10.97

cc 15/10 97 68 0.17 12.91
comp 4/2 11 6 0.00 16.12

ep 7/4 32 27 0.03 12.93
sort 8/8 25 20 15.36 9.89

9sym 9/1 230 97 0.30 8.15
clip 9/5 333 125 0.40 7.31

cordic 23/2 68 35 0.10 11.30
c432 36/7 117 44 4.05 9.78

Aver. 10.97

Table 2: Statistics of benchmark examples.
These benchmarks were modified by inserting at each node about

10% more non-determinism than originally present. The average
amount of non-determinism per node is shown in Column 6 of
Table 2, where N is the number of nodes, Nnd the number of ND
nodes, and Rec the average number of reconvergent paths per node.

 Behavior Flexibility

Name SS, % NSC, % NS, % SS, % NS, %
4ac 1.39 1.29 1.04 45.74 47.30

bpds 4.53 4.53 4.22 72.59 72.59
cc 0.54 0.53 0.49 64.40 64.46

comp 100.00 100.00 85.41 100.00 100.00
ep 20.83 20.83 20.83 81.76 81.76

sort 1.08 1.07 0.62 54.92 57.13
9sym 57.61 57.61 57.61 87.12 87.12

clip 41.58 41.58 41.58 84.23 84.31
cordic 45.63 45.63 44.71 84.74 84.74
c432 46.28 44.83 16.95 54.21 54.64

Aver. 31.94 31.79 27.34 72.97 73.40

Table 3: Comparison of NSC and SS flexibilities.

The amount of global non-determinism was computed for the
three behaviors for the resulting network shown in Columns 2, 3,
and 4 of Table 3. The SS behavior was taken as the external

specification, and was used in calculating the average, over all
nodes, of the amount of non-determinism in the resulting NSC and
SS flexibilities. These are shown in Columns 5 and 6 of Table 3.

12 Conclusions

A theory of non-deterministic networks has been developed and
implemented to merge the two concepts of multi-level networks
and non-determinism. Space limitations allowed for only stating
the results of this investigation. For a more complete
understanding, it is necessary to refer to [5].

The legality of various classical network manipulations was
analyzed under three different definitions of behavior, which
correspond to three methods of simulation: normal (NS), normal
compatible (NSC), and set simulation (SS). SS is the same as that
obtained by eliminating all internal nodes in the network in
topological order and NSC is equivalent to elimination in reverse
topological order. It was shown that NS NSC SS⊆ ⊆ .

For { , , }B NS NSC SS∈ , algorithms were given to compute
corresponding complete flexibilities (B-CFs) at a node. It is claimed
that these flexibilities are maximum, and all have the property that
any well-defined sub-relation contained in them maintains
compliance.

Two operations could cause non-compliance when non-
determinism is present; extraction is problematic for SS, while
elimination is problematic for NSC. However, easy specific
modifications were given, which alter the way extraction or
elimination is performed in those cases where some non-
determinism is related to the node under operation.

The use of NS behavior seems too computationally expensive
for larger circuits since it is equivalent to computing a Boolean
relation for the entire network. In contrast, NSC and SS behaviors
have reasonable computational costs (as verified by our current
implementations), since they can be formulated in terms of a
relation at each of the separate outputs. All behaviors can be fit
into a hierarchical theory, which can handle very large networks.

The manipulation of ND networks using SS-behavior was
implemented in the second generation of the MVSIS system [6].
Recently, NSC behavior has been implemented in MVSIS. The
experimental results show that the flexibility computed using both
types of behavior are significantly larger than the amount of non-
determinism present at the node (73% vs. 10%). The additional
flexibility can improve the quality of the optimization algorithms.

Surprisingly, experimental results indicate that NSC yields only
about 1% more flexibility than for SS. Since we also found that
computing NSC flexibility was much more difficult that we first
thought, we conclude that the use of the more efficient
computation (SS) does not loose much in flexibility.

Initial experience with modification of those operations that
could cause the network to become non-compliant, show that it is
easy to modify these on-the-fly. Efficiency of handling ND
networks is on a par with the manipulation of comparable

deterministic binary networks; thus the penalty for including the
generalizations to multi-valued non-deterministic nodes is small11.

A near-term future goal is to experiment with enhancing the well-
known binary operations by allowing various optimization
algorithms to search in a larger (MV) space. A longer-range goal is
to open up, to many applications, the possibility of manipulating
non-deterministic problems. For example, we can use ND network
manipulations to operate on ND regular automata by developing
efficient operations of complementation and composition. These
could be applied directly to multi-level network representations of
the automata yielding possible improvements in efficiency over
existing techniques. Many applications, such as protocol
synthesis, cryptography, discrete control problems, solving games
etc., could benefit from this capability.

References
[1] D. Brand, “Verification of large synthesized designs”, Proc.

ICCAD ’93, pp. 456-459.
[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen,

A. L. Sangiovanni-Vincentelli, Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, Dordrecht,
1984.

[3] A. Mishchenko, and R. Brayton, “A Boolean paradigm for
multi-valued logic synthesis”, Proc. IWLS’02, pp. 173-177.

[4] A. Mishchenko and R. Brayton, ”Simplification of non-
deterministic multi-valued networks”, Proc. ICCAD‘02,
pp.557-562.

[5] A. Mishchenko, and R. Brayton, “A Theory of Non-
Deterministic Networks”, UC Berkeley Technical Report, ERL,
EECS Department, Feb. 2003.

[6] MVSIS Group. MVSIS. UC Berkeley. http://www-
cad.eecs.berkeley.edu/mvsis/

[7] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued
minimization for PLA optimization”. IEEE Trans. CAD, Vol.
6(5), pp. 727-750, Sep. 1987.

[8] E. Sentovich, et al, “SIS: A system for sequential circuit
synthesis”, Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS,
Univ. of California, Berkeley, 1992.

[9] Y. Watanabe, L. Guerra and R. K. Brayton, “Logic optimization
with multi-output gates”, Proc. ICCD ‘93, pp. 416-420.

[10] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. L.
Sangiovanni-Vincentelli, “Solution of parallel language equations
for logic synthesis”, Proc. ICCAD ’01, pp. 103-111.

11 In fact, the new theory gave us the motivation to re-implement

all the technology independent operations of SIS in this more general
setting. The result is a logic synthesis capability which is much more
efficient – there was little loss because of the generalization while the
re-thinking of the algorithms and data-structures improved the
efficiency greatly.

