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Abstract 

This paper describes a new approach to disjoint-support 
decomposition. Its advantage over Bertacco-Damiani [1] 
and Minato-DeMicheli [2] is that it is relatively simple and 
easy to implement. The advantage over Sasao-Matsuura [3] 
is that the run time is reasonable (less than 1 sec for 
functions with 20-25 inputs). It has not been proved that 
this method determines all disjoin-support decompositions. 
However, it has found all known disjoint-support 
decompositions when tested on artificially generated 
examples as well as on a selection of PLA and BLIF MCNC 
benchmarks.  

1 Introduction 

There are several approaches to disjoin-support 
decomposition. Approach [1] uses the BDD structure as a 
guide for decomposition. In this approach, disjoint-support 
decomposition for a function is derived by first deriving it 
for the cofactors of the function and then comparing the 
resulting decomposition lists. Approach [2] uses the 
properties of recursive computation of Irredundant Sum-of-
Products to derive factored forms, from which disjoint 
decomposition can be determined. Approach [3] uses 
Jacobian introduced in [4] to find candidate variable sets for 
disjoint-support decomposition. 

The proposed approach is similar to [3] in that it uses the 
specialized formula to determine the likely bound sets. 
However, the formula used is essentially different from 
Jacobian and computationally is less expansive. Additional 
speed-up has been achieved due to efficient 
implementation, in particular, using BDDs to store the 
intermediate results and test whether the decomposition 
with the given bound set exists. 

The following sections contain the outline of the 
decomposition algorithm. 

2 Definitions  

Given a Boolean function F: Bn
 → B, where B = {0,1}, 

the negative (positive) cofactor of F with respect to (w.r.t.) 
variable x is the Boolean function F0 (F1) derived by 
substituting into F instead of x the value 0 (1). Similarly, it 
is possible to define cofactors w.r.t. a number of variables, 
in particular, two variables. For example, assuming that x 
and y are variables of the function, F01 is derived by 
substituting 0 instead of x and 1 instead of y. 

In this paper, the function is said to satisfy the 
decomposition property with variables {x,y} if the formula 
is true for the function: F00 & F11 = F01 & F10. Notice that in 
the following sections this formula is considered not for the 
function but for the Boolean difference of the function. 

The Boolean difference of function F w.r.t. a variable x is 
Exclusive OR of its two cofactors w.r.t. to x: DF,x = F0 ⊕  F1. 

Function F(X) is disjoint-decomposable with bound set 
X1 = { xi1,xi2,xi3, …} and free set X2 = { xk1,xk2,xk3, …}, 
if X1 and X2 form a disjoint partition on variable set X, and 
F(X) can be represented as F(X) = H( G(X1), X2 ), where 
G(X1) is a single-output Boolean function. 

Function F(X) is bi-decomposable with AND-gate and 
variable sets X1 = {xi1,xi2,xi3,…} and X2 = {xk1,xk2,xk3,…}, 
if F can be represented as F(X) = A(X1) & B(X2), 

3 Theory 

Theorem 1. If the function is bi-decomposable with the 
AND-gate, it satisfies the decomposition property. 

The opposite is not true. The function may satisfy the 
property and yet have no disjoint decomposable. Consider 
an example: F(a,b,c,d) = dcb + da +cd+ cb . This function 
is not AND-bi-decomposable with variable sets {a,b} and 
{c,d}, as can be verified by drawing its Karnaugh map, yet 
it satisfies decomposition property w.r.t. variables {a,b}. 

 
 



Theorem 2. Let function F be disjoint-decomposable with 
bound set X1 and free set X2. Let z ∈  X1, and a and b belong 
to different sets (a ∈  X1, b ∈  X2 or a ∈  X2, b ∈  X1), then the 
Boolean difference of F w.r.t. variable z satisfies the 
decomposition property with variables {a,b}. 

Proof: The theorem is proved by showing that if the 
function has disjoint-support decomposition with X1 and 
X2, then its Boolean difference w.r.t. a variable in the bound 
set is AND-bi-decomposable with a pair of variables, one of 
which belongs to the bound set and another belongs to the 
free set.  

According to Theorem 1, the Boolean difference of this 
function satisfies the decomposition property. 

Let us show that the Boolean difference w.r.t. a variable in 
the bound set is AND-bi-decomposable. 

F = F( G(z,a,...), b,...) 
Fz=0 = F( G(0,a,...), b,...) 
Fz=1 = F( G(1,a,...), b,...) 
Perform Shannon expansion w.r.t. G as an input of F. 
Fz=0 = F( 0, b, ...) & a,...)G(0, ⊕  F( 1, b, ...) & a,...)G(0,  

Fz=1 = F( 0, b, ...) & a,...)G(1, ⊕  F( 1, b, ...) & a,...)G(1,  
Compute the Boolean difference of F w.r.t. z: 
 
DF,z = Fz=0 ⊕  Fz=1  

          = F( 0, b, ...) & a,...)G(0, ⊕  F( 1, b, ...) & a,...)G(0,  

      ⊕  F( 0, b, ...) & a,...)G(1, ⊕  F( 1, b, ...) & a,...)G(1,  
 
      = F( 0, b, ...) & [ a,...)G(0, ⊕ a,...)G(1, ] 
      ⊕  F( 1, b, ...) & [ a,...)G(0, ⊕ a,...)G(1, ] 
 
      = F( 0, b, ...) & [ a,...)G(0, ⊕ a,...)G(1, ] 
      ⊕  F( 1, b, ...) & [ a,...)G(0, ⊕ a,...)G(1, ] 
 
   = [F( 0, b, ...) ⊕  F( 1, b, ...)] & [ a,...)G(0, ⊕ a,...)G(1, ] 
It proves that the Boolean difference w.r.t. a variable in 

the bound set is indeed AND-bi-decomposable. 

4 Main Algorithm 

Disjoint-support decomposition is performed recursively. 
A single-output Boolean function is given to the algorithm. 
The algorithm tries to decompose the function by 
considering several types of bound sets. As soon as the 
decomposition is found, it is performed and two new 
functions are derived: G(X1) and H(g,X2). The 
decomposition is now called recursively for these two 
components.  

The pseudo-code of the decomposition algorithm is given 
in Fig. 1. 

 
DisjointDecompose( func F )
{

varset V;
if ( V = DecExists1( F ) )

goto DECOMPOSE;
if ( V = DecExists2( F ) )

goto DECOMPOSE;
if ( V = DecExists3( F ) )

goto DECOMPOSE;

for ( all variables z in support of F ) {
while ( CandidateVarSetExists( F, z ) ) {

if ( V = DecExists4( F ) )
goto DECOMPOSE;

if ( V = DecExists5( F ) )
goto DECOMPOSE;

}
}

DECOMPOSE:
if ( V != 0 ) {

( G, H ) = PerformDecomposition( F, V );
DisjointDecompose ( G );
DisjointDecompose ( H );

}
}

Fig. 1. The outline of the decomposition algorithm. 

Procedure DecExists1() tries to find disjoint-support 
decomposition with two variables in the bound set by 
cofactoring the function and counting the number of pairs of 
equal cofactors. For example, F = H( a & c, b,...). 

Procedure DecExists2() tries to find decompositions with 
a two-input gate at the output of the function. For example, 
OR-disjoint-decomposition of this kind is F = a + G(b,...). 

Procedure DecExists3() tries the difference of supports of 
F(X) and DF,z as a possible bound set for decomposition. 

Procedure CandidateVarSetExistis() tries to find a likely 
bound set using the decomposition property. When the 
bound set is found, DecExists4() tries it as it is, while 
DecExists5() tries the same bound set with variable z added. 

5 Deriving Candidate Bound Sets  

The decomposability condition can be used to find 
candidate bound sets, which are next tested for disjoint-
decomposition using a specialized BDD-based method.  

To this end, the variables in the support of the function 
are considered one-by-one. The Boolean difference is 
derived for each variable and the decomposability condition 
is tested for each pair of variables in the support of the 
Boolean difference. 

The result of testing the decomposability condition is 
represented as a matrix with as many rows and columns as 
there are variables in the support of the Boolean difference. 
If the decomposability condition is true for a pair of 
variables, the corresponding cell of the matrix is labeled by 
the cross; otherwise, it remains blank.  

A typical matrix of this kind is shown in Fig. 2. 
 



  a b c d e f   
 a         x x   
 b          x  x   
 c         x x   
 d         x x   
 e x x x x       
 f x x x x       

 Fig. 1. A typical disjoint-support decomposition matrix. 

The fact that the decomposability condition is true for 
variables {a,e} means, according to Theorem 2, that the 
function is can have disjoint decomposition with these 
variables belonging to different variable sets: {a} in the 
bound set and {e} in the free set, or vice versa. The same 
can be stated about other variable pairs, which have the 
cross in the corresponding cell. The general conclusion is 
that variables {a,b,c,d} should be tested as a candidate 
bound set for disjoint-decomposition.  

If the function is not decomposable with this bound set, it 
may happen that the variable z, with respect to which the 
Boolean difference was computed, also belongs to the 
bound set, so next the algorithm will test the candidate 
bound set {z,a,b,c,d}. 

By generalizing this approach it is possible to reduce the 
search for candidate bound sets to the computation of 
strongly connected components in the graph induced by the 
matrix. 

6 Checking Disjoint Decomposition  

A specialized BDD-based procedure has been developed 
for the purpose (see “bDecomp.c” in EXTRA library). 

7 Conclusions  

This method works remarkably well for many 
benchmarks. Its performance degrades when the number of 
inputs is more than 30. Advantages and disadvantages of 
the method are listed in the Abstract. 

The algorithm can be improved in the following ways: 
1) It can be modified by developing a heuristic strategy 

determining the order of testing bound set. In this 
way, the run time for decomposable benchmarks can 
be reduced because the decomposition will be found 
after a small number of trials-and-errors. For non-
decomposable functions, however, the runtime will 
remain the same, because all candidate bound sets 
will have to be tested to “prove” non-
decomposability.  

2) There may be a way to trade the “provable quality” 
for “runtime” by considering only a part of all 
candidate bound sets and if the function is not 

decomposable on them, declaring it not 
decomposable at all.  

3) A number of improvements can also be made to the 
BDD-based procedure, which tests the bound set and 
performs the decomposition if it exists. 
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