
An Approach to Disjoint-Support Decomposition of Logic Functions

Alan Mishchenko
Portland State University

Department of Electrical and Computer Engineering
Portland, OR 97207, USA

alanmi@ee.pdx.edu

Abstract

This paper describes a new approach to disjoint-support
decomposition. Its advantage over Bertacco-Damiani [1]
and Minato-DeMicheli [2] is that it is relatively simple and
easy to implement. The advantage over Sasao-Matsuura [3]
is that the run time is reasonable (less than 1 sec for
functions with 20-25 inputs). It has not been proved that
this method determines all disjoin-support decompositions.
However, it has found all known disjoint-support
decompositions when tested on artificially generated
examples as well as on a selection of PLA and BLIF MCNC
benchmarks.

1 Introduction

There are several approaches to disjoin-support
decomposition. Approach [1] uses the BDD structure as a
guide for decomposition. In this approach, disjoint-support
decomposition for a function is derived by first deriving it
for the cofactors of the function and then comparing the
resulting decomposition lists. Approach [2] uses the
properties of recursive computation of Irredundant Sum-of-
Products to derive factored forms, from which disjoint
decomposition can be determined. Approach [3] uses
Jacobian introduced in [4] to find candidate variable sets for
disjoint-support decomposition.

The proposed approach is similar to [3] in that it uses the
specialized formula to determine the likely bound sets.
However, the formula used is essentially different from
Jacobian and computationally is less expansive. Additional
speed-up has been achieved due to efficient
implementation, in particular, using BDDs to store the
intermediate results and test whether the decomposition
with the given bound set exists.

The following sections contain the outline of the
decomposition algorithm.

2 Definitions

Given a Boolean function F: Bn
 → B, where B = {0,1},

the negative (positive) cofactor of F with respect to (w.r.t.)
variable x is the Boolean function F0 (F1) derived by
substituting into F instead of x the value 0 (1). Similarly, it
is possible to define cofactors w.r.t. a number of variables,
in particular, two variables. For example, assuming that x
and y are variables of the function, F01 is derived by
substituting 0 instead of x and 1 instead of y.

In this paper, the function is said to satisfy the
decomposition property with variables {x,y} if the formula
is true for the function: F00 & F11 = F01 & F10. Notice that in
the following sections this formula is considered not for the
function but for the Boolean difference of the function.

The Boolean difference of function F w.r.t. a variable x is
Exclusive OR of its two cofactors w.r.t. to x: DF,x = F0 ⊕ F1.

Function F(X) is disjoint-decomposable with bound set
X1 = { xi1,xi2,xi3, …} and free set X2 = { xk1,xk2,xk3, …},
if X1 and X2 form a disjoint partition on variable set X, and
F(X) can be represented as F(X) = H(G(X1), X2), where
G(X1) is a single-output Boolean function.

Function F(X) is bi-decomposable with AND-gate and
variable sets X1 = {xi1,xi2,xi3,…} and X2 = {xk1,xk2,xk3,…},
if F can be represented as F(X) = A(X1) & B(X2),

3 Theory

Theorem 1. If the function is bi-decomposable with the
AND-gate, it satisfies the decomposition property.

The opposite is not true. The function may satisfy the
property and yet have no disjoint decomposable. Consider
an example: F(a,b,c,d) = dcb + da +cd+ cb . This function
is not AND-bi-decomposable with variable sets {a,b} and
{c,d}, as can be verified by drawing its Karnaugh map, yet
it satisfies decomposition property w.r.t. variables {a,b}.

Theorem 2. Let function F be disjoint-decomposable with
bound set X1 and free set X2. Let z ∈ X1, and a and b belong
to different sets (a ∈ X1, b ∈ X2 or a ∈ X2, b ∈ X1), then the
Boolean difference of F w.r.t. variable z satisfies the
decomposition property with variables {a,b}.

Proof: The theorem is proved by showing that if the
function has disjoint-support decomposition with X1 and
X2, then its Boolean difference w.r.t. a variable in the bound
set is AND-bi-decomposable with a pair of variables, one of
which belongs to the bound set and another belongs to the
free set.

According to Theorem 1, the Boolean difference of this
function satisfies the decomposition property.

Let us show that the Boolean difference w.r.t. a variable in
the bound set is AND-bi-decomposable.

F = F(G(z,a,...), b,...)
Fz=0 = F(G(0,a,...), b,...)
Fz=1 = F(G(1,a,...), b,...)
Perform Shannon expansion w.r.t. G as an input of F.
Fz=0 = F(0, b, ...) & a,...)G(0, ⊕ F(1, b, ...) & a,...)G(0,

Fz=1 = F(0, b, ...) & a,...)G(1, ⊕ F(1, b, ...) & a,...)G(1,
Compute the Boolean difference of F w.r.t. z:

DF,z = Fz=0 ⊕ Fz=1

 = F(0, b, ...) & a,...)G(0, ⊕ F(1, b, ...) & a,...)G(0,

 ⊕ F(0, b, ...) & a,...)G(1, ⊕ F(1, b, ...) & a,...)G(1,

 = F(0, b, ...) & [a,...)G(0, ⊕ a,...)G(1,]
 ⊕ F(1, b, ...) & [a,...)G(0, ⊕ a,...)G(1,]

 = F(0, b, ...) & [a,...)G(0, ⊕ a,...)G(1,]
 ⊕ F(1, b, ...) & [a,...)G(0, ⊕ a,...)G(1,]

 = [F(0, b, ...) ⊕ F(1, b, ...)] & [a,...)G(0, ⊕ a,...)G(1,]
It proves that the Boolean difference w.r.t. a variable in

the bound set is indeed AND-bi-decomposable.

4 Main Algorithm

Disjoint-support decomposition is performed recursively.
A single-output Boolean function is given to the algorithm.
The algorithm tries to decompose the function by
considering several types of bound sets. As soon as the
decomposition is found, it is performed and two new
functions are derived: G(X1) and H(g,X2). The
decomposition is now called recursively for these two
components.

The pseudo-code of the decomposition algorithm is given
in Fig. 1.

DisjointDecompose(func F)
{

varset V;
if (V = DecExists1(F))

goto DECOMPOSE;
if (V = DecExists2(F))

goto DECOMPOSE;
if (V = DecExists3(F))

goto DECOMPOSE;

for (all variables z in support of F) {
while (CandidateVarSetExists(F, z)) {

if (V = DecExists4(F))
goto DECOMPOSE;

if (V = DecExists5(F))
goto DECOMPOSE;

}
}

DECOMPOSE:
if (V != 0) {

(G, H) = PerformDecomposition(F, V);
DisjointDecompose (G);
DisjointDecompose (H);

}
}

Fig. 1. The outline of the decomposition algorithm.

Procedure DecExists1() tries to find disjoint-support
decomposition with two variables in the bound set by
cofactoring the function and counting the number of pairs of
equal cofactors. For example, F = H(a & c, b,...).

Procedure DecExists2() tries to find decompositions with
a two-input gate at the output of the function. For example,
OR-disjoint-decomposition of this kind is F = a + G(b,...).

Procedure DecExists3() tries the difference of supports of
F(X) and DF,z as a possible bound set for decomposition.

Procedure CandidateVarSetExistis() tries to find a likely
bound set using the decomposition property. When the
bound set is found, DecExists4() tries it as it is, while
DecExists5() tries the same bound set with variable z added.

5 Deriving Candidate Bound Sets

The decomposability condition can be used to find
candidate bound sets, which are next tested for disjoint-
decomposition using a specialized BDD-based method.

To this end, the variables in the support of the function
are considered one-by-one. The Boolean difference is
derived for each variable and the decomposability condition
is tested for each pair of variables in the support of the
Boolean difference.

The result of testing the decomposability condition is
represented as a matrix with as many rows and columns as
there are variables in the support of the Boolean difference.
If the decomposability condition is true for a pair of
variables, the corresponding cell of the matrix is labeled by
the cross; otherwise, it remains blank.

A typical matrix of this kind is shown in Fig. 2.

 a b c d e f
 a x x
 b x x
 c x x
 d x x
 e x x x x
 f x x x x

 Fig. 1. A typical disjoint-support decomposition matrix.

The fact that the decomposability condition is true for
variables {a,e} means, according to Theorem 2, that the
function is can have disjoint decomposition with these
variables belonging to different variable sets: {a} in the
bound set and {e} in the free set, or vice versa. The same
can be stated about other variable pairs, which have the
cross in the corresponding cell. The general conclusion is
that variables {a,b,c,d} should be tested as a candidate
bound set for disjoint-decomposition.

If the function is not decomposable with this bound set, it
may happen that the variable z, with respect to which the
Boolean difference was computed, also belongs to the
bound set, so next the algorithm will test the candidate
bound set {z,a,b,c,d}.

By generalizing this approach it is possible to reduce the
search for candidate bound sets to the computation of
strongly connected components in the graph induced by the
matrix.

6 Checking Disjoint Decomposition

A specialized BDD-based procedure has been developed
for the purpose (see “bDecomp.c” in EXTRA library).

7 Conclusions

This method works remarkably well for many
benchmarks. Its performance degrades when the number of
inputs is more than 30. Advantages and disadvantages of
the method are listed in the Abstract.

The algorithm can be improved in the following ways:
1) It can be modified by developing a heuristic strategy

determining the order of testing bound set. In this
way, the run time for decomposable benchmarks can
be reduced because the decomposition will be found
after a small number of trials-and-errors. For non-
decomposable functions, however, the runtime will
remain the same, because all candidate bound sets
will have to be tested to “prove” non-
decomposability.

2) There may be a way to trade the “provable quality”
for “runtime” by considering only a part of all
candidate bound sets and if the function is not

decomposable on them, declaring it not
decomposable at all.

3) A number of improvements can also be made to the
BDD-based procedure, which tests the bound set and
performs the decomposition if it exists.

References

[1] V. Bertacco, M. Damiani. "The Disjunctive Decomposition
of Logic Functions". Proc. of ICCAD '97, pp. 78-82.

[2] S. Minato, G. DeMicheli. "Finding All Simple Disjunctive
Decompositions Using Irredundant Sum-of-Products Forms".
Proc. of ICCAD '98, pp. 111-117.

[3] T.Sasao, M.Matsuura. “DECOMPOS: An Integrated System
for Functional Decomposition”. Proc. of IWLS ’98, pp. 471-477.

[4] V. Y.-S. Shen, A.C. Mckellar, P.Weiner, “A fast algorithm
for disjunctive decomposition of logic functions”. IEEE Trans.
Comps. Vol. C-20, No. 3, pp. 304-309, March 1971.

